Уважаемый студент, выполнение указанных заданий строго обязательно!

Группа ТЭК 1/2 Дата:25.11.2022г.

Дисциплина: ОДП Биология Преподаватель: Воронкова А.А.

Раздел 3. Основы генетики и селекции Тема 3.1 Основы учения о наследственности и изменчивости

Цель: ознакомление с основными этапами становления генетики как науки, раскрыть её значение, сформировать основные понятия; сформировать знания о гибридологическом методе, моногибридном скрещивании, дигибридном скрещивании; вырабатывать умения записывать схемы скрещивания; развивать умение выделять главное, расширять кругозор, развивать память; воспитывать познавательный интерес к предмету; развивать терминологическую речь, умение оперировать генетической символикой; осуществлять нравственное и патриотическое воспитание учащихся.

Лекция

- 1. Генетика наука о закономерностях наследственности и изменчивости организмов. Генетическая терминология и символика.
- 2.Законы генетики, установленные Г. Менделем. Моногибридное и дигибридное скрещивание. Сцепленное наследование. Хромосомная теория наследственности

Алгоритм работы

- 1. Изучите теоретическую информацию лекции,
- 2. Изучите видео материал: https://resh.edu.ru/subject/lesson/5530/main/278628/
- 3. Ответьте на контрольные вопросы в тетради
- 4. Отправьте скрин выполненной работы преподавателю

І. История генетики.

С незапамятных времён учёных и обычных людей волновал вопрос о причинах сходства потомков с родителями, о природе вновь возникающих изменений. Накапливался фактический материал, но причина так и оставалась неясной.

Первый шаг в познании закономерностей наследования сделал выдающийся чешский исследователь Грегор Мендель(1822 – 1884). Он выявил важнейшие законы наследственности, доказал, что признаки организма определяются дискретными (отдельными) наследственными факторами. Работа Менделя отличалась глубиной и математической чёткостью. Но эти исследования оставались неизвестными почти 35 лет (с 1865 по 1900 год).

- 1. Основные этапы генетики:
- открытие закономерностей наследственности Г.Менделем (1865);
- переоткрытие закономерностей де Фризом (Голланд.), Корренсом (Германия), Чермаком (Австрия) в 1900 году;
- установлено, что факторы наследственности гены являются участками хромосом (хромосомная теория Т.Моргана 1910-1911г).
- объяснение закономерностей наследственности на молекулярном уровне (теория «один ген один фермент» 40-е годы XX века).

Таким образом, официальный год рождения генетики 1900.

В 1910 году на средства учёных всего мира в городе Брно был поставлен памятник Г.Менделю.

Задачи генетики.

Генетика – наука наследственности, изменчивости и материальных основах наследования. Основные задачи:

- изучение механизма изменения гена, репродукции генов и хромосом, действия генов и контролирования ими образования сложных признаков и свойств в целом организме;
- изучение взаимосвязи процессов наследственности, изменчивости и отбора в развитии органической природы;
- исследование путей создания новых форм животных и растений, характеризующихся необходимыми для человека свойствами и признаками;
- создание теоретических основ для лечения наследственных заболеваний человека.

Развитие генетики в России.

В СССР в 20 – 30 годы выдающийся вклад в генетику внесли работы Н.И.Вавилова, Н.К.Кольцова, С.С.Четверикова, А.С.Серебровского и др.

В середине 30-х годов в отечественной генетике возобладали антинаучные взгляды Т.Д.Лысенко, что до 1965 года остановило её развитие и привело к уничтожению крупных генетических школ. В то же время за рубежом генетика очень быстро развивалась, особенно направление молекулярной генетики, позволившее понять механизм работы генов.

Основные термины

Наследственность — свойство организмов предавать свои признаки и свойства из поколения в поколение.

Изменчивость – свойство организма приобретать новее признаки и свойства под воздействием различных факторов.

Половые клетки - гаметы при (половом размножении, **соматические** клетки (при бесполом).

Фенотоп – совокупность всех внешних и внутренних признаков организма.

Генотип – совокупность генов организма.

Гибридологический метод исследования (22 сорта гороха, 8 лет)

Моногибридное скрещивание - скрещивание родительских особей, отличающихся по одному признаку

Доминантный признак (А) – преобладающий;

Рецессивный (а) – подавляемый.

Символы, принятые в традиционной генетике

	Chindottal, ilpinimi de d'ipugnantini i entrince				
9	женский организм				
3	мужской организм				
×	знак скрещивания				
P	родительские организмы				
F1, F2	дочерние организмы первого и второго поколения				
A, B, C	гены, кодирующие доминантные признаки				
a, b, c	аллельные им гены, кодирующие рецессивные признаки				
AA, BB, CC	генотипы особей, моногомозиготных по доминантному признаку				
Aa, Bb, Cc	генотипы моногетерозиготных особей				
aa, bb, cc	генотипы рецессивных особей				
AaBb, AaBbCc	генотипы ди- и тригетерозигот				
A B, CD	генотипы дигетерозигот в хромосомной форме при независимом и				
a b cd	сцепленном наследовании				
A, a, AB,	Гаметы				
cd					

Гомозиготными (AA) являются представители «чистых линий», организмы, все предки которых несли тот же признак; особи, оба родителя которых были гомозиготными по этому признаку, и в потомстве которых (F1) не наблюдается расщепление.

Гетерозиготыми (Aa), являются организмы, у которых один из родителей или потомков несет рецессивный признак, или если в его потомстве наблюдается расщепление

Анализирующее скрещивание

Не всегда по фенотипу можно определить генотип организма. Для определения генотипа проводят анализирующее скрещивание – скрещивание с особью, гомозиготной по рецессивному признаку.

АА x aa = 100% (желтые) Аа x aa = 50% Аа (жёлтые); 50% aa (зелёные).

Неполное доминирование - промежуточное проявление признака (ночная красавица)

AA – красные x аа – белые F_1 Aa – розовые F_2 AA : Aa : aa = 1: 2: 1

Законы Г. Менделя

1.Закон единообразия гибридов первого поколения F_1 – I закон Γ . Менделя.

При скрещивании двух гомозиготных организмов, отличающихся друг от друга по одной паре альтернативных признаков, все первое поколение гибридов окажется единообразным и будет нести признак одного родителя.

2.3акон расщепления признаков гибридов F_2 – II закон Γ . Менделя.

При скрещивании двух геторозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в числовом отношении по фенотипу 3:1, по генотипу 1:2:1

Явление, при котором часть гибридов второго поколения несёт доминантный признак, а часть - рецессивный называют расщеплением

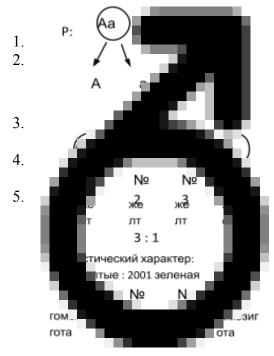
Закон чистоты гамет (объясняет явление расщепления): Наследственные факторы при образовании гибридов не смешиваются, а сохраняются в неизменном виде.

Гипотеза чистоты гамет в решении задачи.

1. Желтый горох с 2-мя доминантными генами желтой окраски (он чист по признаку – цвет в генотипе только желтый)

зеленый горох с 2-мя рецессивными генами зеленой окраски (а)

2. Гены в гаметах



В диплоидных клетках присутствуют две аллели; в одной гамете две аллели не находиться не могут.

3. Зиготы из таких гамет в F₁

- 4. Окраска: все желтые, т.к ген $\stackrel{\text{(A)}}{\longrightarrow}$ доминантный желтый; но в генотипе есть и зеленый $\stackrel{\text{(a)}}{\longrightarrow}$, он подавляется; мы видим соблюдение правил единообразия гибридов F_1 .
- 4. Окраска: все желтые, т.к ген $\stackrel{\text{(A)}}{\longrightarrow}$ доминантный желтый; но в генотипе есть и зеленый $\stackrel{\text{(a)}}{\longrightarrow}$, он подавляется; мы видим соблюдение правил единообразия гибридов F_1 .

Второе поколение F_2

Желтый горох $F_1 - \stackrel{\text{(Aa)}}{}$

Гены в разных гаметах: созревают два сорта разных гамет

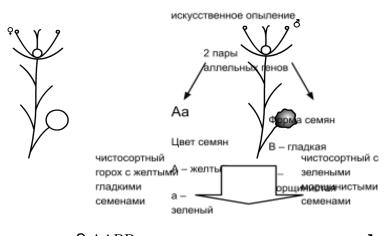
(либо желтые, либо зеленые, т.е гаметы не гибридные).

В результате оплодотворения из этих гамет образуются 4 типа зигот.

Окраска этих семян (фенотип – внешнее проявление генотипа).

Генотип семян

III закон Менделя


При скрещивании двух гомозиготных особей, отличающихся друг от друга по двум парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и

комбинируются во всех возможных сочетаниях.

- □ Дигибридное скрещивание это два моногибридных скрещивания, идущих независимо
- \square Две пары признаков, которые объединены в F_1 (ABab) в F_2 разделяются и ведут себя независимо от других признаков..

Дигибридное скрещивание

(гены разных признаков лежат в разных хромосомах)

 \mathbf{F}_1 : все желтые гладкие

Желтые гладкие, Желтые гладкие, Гаметы: тетерозигота гетерозигота

Гаметы:

Для построения решетки Пеннета по вертикальной оси следует отметить гаметы одного родительского организма, а по горизонтальной – другого. В месте пересечения вертикалей и горизонталей записываются генотипы дочерних организмов.

P	AB	Ab	Ba	ab	Фенотипов:
ð					4 разных
AB	ABAB	ABAb	ABBa	ABab	
	желтый	желтый	желтый	желтый	Генотипов: 16
	гладки	гладкий	гладкий	гладкий	
	й				Генотипов
Ab	AbAB	AbAb	AbBa	Abab	больше, чем
	желтый	желтый	желтый	желтый	фенотипов
	гладки	морщинисты	гладкий	морщинисты	
	й	й		й	
Ва	BaAB	BaAb	BaBa	Baab	
	желтый	желтый	зелены	зеленый	
	гладки	гладкий	й	гладкий	
	й		гладкий		
ab	abAB	abAb	abBa	abab	
	желтый	желтый	зелены	зеленый	
	гладки	морщинисты	й	морщинисты	
	й	й	гладкий	й	

Мендель собрал от растений в F_2 556 семян.

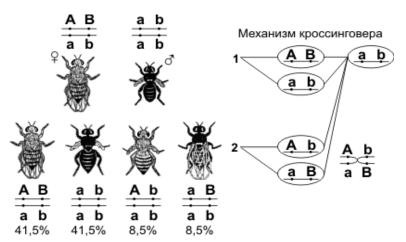
Гладких желтых 9· 6,25% 312,75 315

Морщинистых желтых 3· 6,25% 104,25 101 9 : 3 : 3 : 1

Гладких зеленых 3 · 6,25% 104,25 108 Морщинистых зеленых 1 · 6,25% 34,75 32

Если посчитать соотношение для каждой пары аллельных признаков – цвет, форма (предложить ученикам посчитать самим) то получается:

Гладких 423 : **Морщинистых** 133 3:1 **Желтых** 416 : **Зеленых** 140 3:1


Законы Моргана

- исключение 3 закона Менделя. Не для всех генов характерно независимое распределение в потомстве и свободное комбинирование.

Каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков.

Т. Морган скрещивал мушку дрозофилу с серым телом и нормальными крыльями с мущкой, имеющей тёмную окраску тела и зачаточные крылья. В 1 поколении получались гибриды с серым телом и нормальными крыльями (ген серой окраски тела и нормальными крыльями — доминирует). При проведении скрещивания самки полученной в F_1 с самцом с рецессивными признаками теоретически ожидалось получить потомство с комбинациями признаков — 1:1:1:1. Но в потомстве преобладали особи с признаками родительских форм (41,5% - серые длиннокрылые и 41,5% - черные с зачаточными крыльями), и лишь незначительная часть мушек имела перекомбинированные признаки (8,5% - черные длиннокрылые и 8,5% - серые с зачаточными крыльями).

Вывод: гены, обуславливающие развитие серой окраски тела и длинных крыльев, локализованы в одной хромосоме, а черной окраски и зачаточных крыльев — в другой. Данное явление Морган назвал — **сцеплением. Гены локализованные в одной хромосоме, наследуются совместно и образуют одну группу сцепления.** (явление перекомбинирования объясняется процессом кроссинговера в первом мейотическом делении, но так как кроссинговер происходит не во всех гаметах, происходит нарушение числового соотношения — 1:1:1:1)

Генетика пола

У человека 46 хромосом, из них 44 — аутосомы и 2 половые хромосомы. Хромосомный набор мужчины — 46ху, женщины — 46хх.

Наследование признаков, гены которых локализованы в x, или y-xромосомах, называют наследованием, сцепленным с полом (Т.Х. Морган). x-xромосома содержит ряд генов, определяющие развитие тяжёлых аномалией (гемофелия, дальтонизм). Эти аномалии встречаются y мужчин, но носителями являются женщины.

У мужчин эти гены гемизиготны, их рецессивные аллели вызывают заболевания: X^hY – мужчина больной гемофелией; X^dY – дальтоник

У человека, лишь некоторые гены, не являющиеся жизненно важными, находятся в y- хромосоме. Эти гены наследуются только от отца к сыну. Например — наследование окраски у кошек в X хромосоме.

Черная окраска определяется аллелем гена B в X хромосоме — X^{B} X^{B} , рыжая - аллелем — b— X^{b} X^{b} . Если встречаются аллели B и b - X^{B} X^{b} — то окраска шерсти у кошки будет черепаховой. Генотип черного кота - X^{B} Y , рыжего - X^{b} Y. Трёхцветный кот может быть только с синдромом Клайнфельтера, с трисомией по X — хромосоме - X^{B} X^{b} , в этом случае кот — бесплоден.

<u>Контрольные вопросы</u>

1. Какие типы гамет образуют растения, имеющие генотипы: а) ВВ; б) Вв; в) вв; г) ААВВ; д) ааВВ; е) ААВв; ж) Аавв; з) АаВв; и) Аавв; к) аавв.

- 2. У человека карий цвет глаз доминирует над голубым. Какой цвет глаз у людей, имеющих генотипы: а) Аа; б) аа; в) АА?
- 3. У гороха желтая окраска семян A доминирует над зелёной a, a гладкая форма B над морщинистой в. Определите окраску и форму семян следующих генотипов: a) aaBв; б) AaBв; в) AaBв; г) AaBв; д) AABв; е) aaBB?
- 4. Какие расщепления по генотипу и фенотипу возникнут, если каждый из 9 генотипов второго поколения (опыт Менделя) будет скрещен с аавв?
- 5. Пользуясь материалами лекции и учебника заполнить таблицу:

Основные понятия генетики.

Понятие	Определение
Наследственность.	
Изменчивость.	
Ген.	
Локус.	
Аллель.	
Аллельные (парные).	
Доминантный.	
Рецессивный.	
Гомозиготный.	
Гетерозиготный.	
Генотип.	
Фенотип.	

Для максимальной оценки задание нужно прислать до 15.00 ч. 25.11.2022г. Выполненную работу необходимо сфотографировать и отправить на почтовый ящик <u>voronkova20.88@gmail.com</u>, <u>Александра Александровна (vk.com)</u>, добавляемся в <u>Блог преподавателя Воронковой А.А. (vk.com)</u> -здесь будут размещены видео материалы

-ОБЯЗАТЕЛЬНО ПОДПИСЫВАЕМ РАБОТУ НА ПОЛЯХ + в сообщении указываем дату/группу/ФИО

Основная литература:

Беляев, Д. К. Биология. 11 класс [Текст] : учебник для общеобразоват. организаций: базовый уровень / [Д. К. Беляев, Г. М. Дымшиц, Л. Н. Кузнецова и др.]; под ред. Д. К.Беляева, Г. М. Дымшица. – 3-е изд. – Москва : Просвещение, 2016. – 223 с.