YEAR 11 - MATHEMATICS

Preliminary Topic 5 - The Binomial Expansion and Pascal's Triangle

MATHEMATICS EXTENSION

LEARNING PLAN				
Learning Intentions Student is able to:	Learning Experiences Implications, considerations and implementations:	Success Criteria I can:	Resources	
expand $(x + y)^n$ for small positive integers n		expand $(x + y)^n$ for small positive integers n		
note the pattern formed by the coefficients of x in the expansion of $(1 + x)^n$ and recognise links to Pascal's triangle	The binomial expansion could be introduced by example, using $n = 1$, 2, 3, 4 and Pascal triangle constructed and both then extended to more general case, n . For example: Students find the binomial expansions for $n = 1$, 2, 3, 4 and construct of Pascal's triangle. Students connect the 'coefficients' in the expansions and the values in Pascal's triangle.	note the pattern formed by the coefficients of x in the expansion of $(1 + x)^n$ and recognise links to Pascal's triangle	Nice explanation of Pascal's triangle, here.	
recognise the numbers $(n r)$ (also denoted nC_r) as binomial coefficients	The (so far unknown) coefficients in the polynomial must be labelled by some symbol, such as 'C' for 'coefficient' and write the power of x as a right subscript r , the power n as a left superscript, ie ${}^{n}C_{r}$ is by definition the coefficient of x^{r} in	recognise the numbers $(n r)$ (also denoted ${}^{n}C_{r}$) as binomial coefficients		

	$(1 + x)^{n}. \text{ Therefore:}$ $(1 + x)^{n} = {^{n}C_{0}}x^{0} + {^{n}C_{1}}x^{1} + {^{n}C_{2}}x^{2} + \dots + {^{n}C_{n}}x^{n}.$		
	This identity can be extended into an expression of $(x + y)^n$ by substituting $\frac{y}{x}$ for x in $(1 + x)^n \text{ and multiplying the equation by } x^n \text{ to obtain:}$ $(x + y)^n = {}^n C_0 x^n + {}^n C_1 x^{n-1} y + {}^n C_2 x^{n-2} y^2 + \dots {}^n C_n y^n.$ Students should be aware that the size of the coefficients in the expansion of $(a + b)^n$ first increases and then decreases. However, problems that require the greatest coefficient to be found are not part of this course.		
derive and use simple identities associated with Pascal's triangle		derive and use simple identities associated with Pascal's triangle	
establish combinatorial proofs of the Pascal's triangle relations ${}^{n}C_{0} = 1, \ {}^{n}C_{n} = 1;$ ${}^{n}C_{k} = {}^{n-1}C_{k-1} + {}^{n-1}C_{k} \text{ for }$ $1 \le k \le n-1;$ and ${}^{n}C_{k} = {}^{n}C_{n-k}$		establish combinatorial proofs of the Pascal's triangle relations ${}^{n}C_{0} = 1, \; {}^{n}C_{n} = 1;$ ${}^{n}C_{k} = {}^{n-1}C_{k-1} + {}^{n-1}C_{k}$ for $1 \le k \le n - 1$; and ${}^{n}C_{k} = {}^{n}C_{n-k}$	

Established Goals(Syllabus Outcomes): ME11-5, 6,7	
Estimated Time: 1.4 weeks (8 lessons)	

ASSESSMENT			
Performance Tasks: (Linked to Essential Questions)	Other Evidence:		