
JavaScript

JavaScript

JavaScript

General
Introduction
JavaScript is a programming language that powers the dynamic behavior on most
websites. Alongside HTML and CSS, it is a core technology that makes the web run.

Comments
●​ Single-line comments are created with two consecutive forward slashes //.
●​ Multi-line comments are created by surrounding the lines with /* at the

beginning and */ at the end.
●​ Comments are good ways for a variety of reasons like explaining a code block or

indicating some hints, etc.

// This line will denote a comment

/*
Hi!
I'm Jacky :)!
The following is my code.
*/

console.log()

console.log() is used to log (print) messages to the console. It can also be used to
print objects and other info.

console.log('Hi there!');
// Prints: Hi there!

JavaScript

JavaScript

Variables
Introduction
A variable is a container for data that is stored in computer memory. It is referenced by
a descriptive name that a programmer can call to assign a specific value and retrieve it.

// Examples of variables
let myName = "Tammy";
const found = false;
var age = 3;
console.log(myName, found, age);
// Prints: Tammy false 3

Declaring Variables
To declare (make) a variable in JavaScript, any of these three keywords can be used
along with a variable name:

●​ var is used in pre-ES6 versions of JavaScript (not recommended).
●​ let is the preferred way to declare a variable when it can be reassigned.
●​ const is the preferred way to declare a variable with a constant value.

// different types of variable declarations
var age;
let weight;
const numberOfFingers = 20;

// let example
let count;
console.log(count); // Prints: undefined
count = 10;
console.log(count); // Prints: 10

// const example
const numberOfColumns = 4;
numberOfColumns = 8; // TypeError: Assignment to constant variable.

JavaScript

JavaScript

Data Types
Introduction
Data types are the categories used in programming to define the type, or kind, of
information a variable can hold. Each type specifies the kind of operations that can be
performed on the data.

For example, numbers are used for math operations, strings represent text, and
booleans represent true/false values. Understanding data types helps programmers
organize and manipulate information correctly within a program.

Strings

Strings (text) are a type of data. They are any grouping of characters (letters, spaces,
numbers, or symbols) surrounded by single quotes ' or double quotes ".

let singleQuotes = 'Wheres my bandit hat?';
let doubleQuotes = "Wheres my bandit hat?";

Numbers

Numbers are a type of data. They include the set of all integers (whole) and floating
point (decimal) numbers.

let amount = 6;
let price = 4.99;

Booleans

JavaScript

Booleans are a type of data. They can be either true or false.

let lateToWork = true;

Conditionals

Introduction
The “control flow” is the order in which statements are executed in a program. The
default control flow is for statements to be read and executed in order from left-to-right,
top-to-bottom in a program file.

Control structures such as conditionals (if statements and the like) alter control flow
by only executing blocks of code if certain conditions are met. These structures
essentially allow a program to make decisions about which code is executed as the
program runs.

Comparison Operators

Comparison operators are used to compare two values and return true or false
depending on the validity of the comparison. In JavaScript, == (loose equality)
compares two values for equality after converting them to a common type, while ===
(strict equality) checks for equality without type conversion, meaning both the value and
type must match. Here are some examples of comparison operators:

●​ == loose equal
●​ != loose not equal
●​ == strict equal
●​ != strict not equal
●​ > greater than
●​ >= greater than or equal
●​ < less than
●​ <= less than or equal

JavaScript

JavaScript

1 > 3 // false
3 > 1 // true
250 >= 250 // true

1 === 1 // true
1 === 2 // false
1 === '1' // false
1 == '1' // true
1 == '2' // false

1 != 2 // true
1 != 1 // false
1 !== '1' // true
1 != '2' // true

if Statement

An if statement accepts an expression with a set of parentheses:
●​ If the expression evaluates to a truthy value, then the code within its code body

executes.
●​ If the expression evaluates to a falsy value, its code body will not execute.

const isMailSent = true;
const homeworkDone = false;

if (isMailSent) {
 console.log('Mail sent to recipient');
}
// Prints: Mail sent to recipient

if (homeworkDone) {
 console.log('Time to sleep');
}
// Prints:
// Nothing is printed because "homeworkDone" is not equal to a truthy value

else Statement

JavaScript

JavaScript

An else block can be added to an if block. The else block will be executed only if the
if condition fails.

const isTaskCompleted = false;

if (isTaskCompleted) {
 console.log('Task completed');
} else {
 console.log('Task incomplete');
}
// Prints: Task incomplete

else if Clause

After an initial if block, else if blocks can each check an additional condition. An
optional else block can be added after the else if block(s) to run by default if none
of the conditionals evaluated to truthy.

const size = 10;

if (size > 100) {
 console.log('Big');
} else if (size > 20) {
 console.log('Medium');
} else if (size > 4) {
 console.log('Small');
} else {
 console.log('Tiny');
}
// Print: Small

Logical Operators
Introduction

JavaScript

JavaScript

Logical operators are symbols used in programming to combine or modify boolean
values, which are either true or false. These operators allow for more complex
decision-making in code, helping to control the flow of programs based on multiple
conditions.

Logical Operator !

The logical NOT operator ! can be used to do one of the following:
●​ Invert a Boolean value.
●​ Invert the truthiness of non-Boolean values.

let lateToWork = true;
let oppositeValue = !lateToWork;

console.log(lateToWork);
// Prints: true
console.log(oppositeValue);
// Prints: false

Logical Operator ||

The logical OR operator || checks two values and returns a boolean. If one or both
values are truthy, it returns true. If both values are falsy, it returns false.

A B A || B

false false false

false true true

true false true

true true true

true || false; // true

JavaScript

10 > 5 || 10 > 20; // true
false || false; // false
10 > 100 || 10 > 20; // false

Logical Operator &&

The logical AND operator && checks two values and returns a boolean. If both values are
truthy, then it returns true. If one, or both, of the values is falsy, then it returns false.

A B A && B

false false false

false true false

true false false

true true true

true && true; // true
1 > 2 && 2 > 1; // false
true && false; // false
4 === 4 && 3 > 1; // true

Functions
Introduction
Functions are one of the fundamental building blocks in JavaScript. A function is a
reusable set of statements to perform a task or calculate a value. Functions can be
passed one or more values and can return a value at the end of their execution. In order
to use a function, you must call it. We will primarily only work with CALLING functions
in Sprig, not defining functions.

JavaScript

JavaScript

Function Declaration
Function declarations are used to create named functions. These functions can be
called using their declared name. Function declarations are built from:

●​ The function keyword.
●​ The function name.
●​ An optional list of parameters separated by commas enclosed by a set of

parentheses ().
●​ A function body enclosed in a set of curly braces {}.

function sum(num1, num2) {
 return num1 + num2;
}

Calling Functions
Functions can be called, or executed, elsewhere in code using parentheses following the
function name. When a function is called, the code inside its function body runs.
Arguments are values passed into a function when it is called.

// Defining the function
function sum(num1, num2) {
 return num1 + num2;
}

// Calling the function
sum(3, 5); // 8

let age = sum(2, 4);
console.log(age);
// Prints: 6

Function Parameters (OPTIONAL, ADVANCED)

JavaScript

JavaScript

Inputs to functions are known as parameters when a function is declared or defined.
Parameters are used as variables inside the function body. When the function is called,
these parameters will have the value of whatever is passed in as arguments. It is
possible to define a function without parameters.

// The parameter is name
function sayHello(name) {
 return 'Hello, ' + name + '!';
}

let myName = "bob";
console.log(sayHello(myName));
// Prints: Hello, bob!

console.log(sayHello("Joe"));
// Prints: Hello, Joe!

return Keyword (OPTIONAL, ADVANCED)
Functions return (pass back) values using the return keyword. return ends function
execution and returns the specified value to the location where it was called. A common
mistake is to forget the return keyword, in which case the function will return
undefined by default.

// With return
function sum(num1, num2) {
 return num1 + num2;
}

// Without return, so the function doesn't output the sum
function sum(num1, num2) {
 num1 + num2;
}

Arrow Functions (OPTIONAL, ADVANCED)

JavaScript

Arrow function expressions were introduced in ES6. These expressions are clean and
concise. The syntax for an arrow function expression does not require the function
keyword and uses a fat arrow => to separate the parameter(s) from the body.

There are several variations of arrow functions:

●​ Arrow functions with a single parameter do not require () around the parameter
list.

●​ Arrow functions with a single expression can use the concise function body
which returns the result of the expression without the return keyword.

// Arrow function with two parameters
const sum = (firstParam, secondParam) => {
 return firstParam + secondParam;
};
console.log(sum(2,5)); // Prints: 7

// Arrow function with no parameters
const printHello = () => {
 console.log('hello');
};
printHello(); // Prints: hello

// Arrow functions with a single parameter
const checkWeight = weight => {
 console.log(`Baggage weight : ${weight} kilograms.`);
};
checkWeight(25); // Prints: Baggage weight : 25 kilograms.

// Concise arrow functions
const multiply = (a, b) => a * b;
console.log(multiply(2, 30)); // Prints: 60

Arrays
Introduction

JavaScript

JavaScript

JavaScript

Arrays are lists of ordered, stored data. They can hold items that are of any data type.
Arrays are created by using square brackets, with individual elements separated by
commas.

// An array containing numbers
const numberArray = [0, 1, 2, 3];

// An array containing different data types
const mixedArray = [1, 'chicken', false];

Index
Array elements are arranged by index values, starting at 0 as the first element index.
Elements can be accessed by their index using the array name, and the index
surrounded by square brackets.

// Accessing an array element
const myArray = [100, 200, 300];

console.log(myArray[0]); // Prints: 100
console.log(myArray[1]); // Prints: 200
console.log(myArray[2]); // Prints: 300

.length

The .length property of a JavaScript array indicates the number of elements the array
contains.

const numbers = [1, 2, 3, 4];

numbers.length // 4

JavaScript

JavaScript

Mutable
JavaScript arrays are mutable, meaning that the values they contain can be changed.

Even if they are declared using const, the contents can be manipulated by reassigning
internal values or using methods like .push() and .pop().

const names = ['Alice', 'Bob'];

names.push('Carl');
// ['Alice', 'Bob', 'Carl']

names[2] = 'Jacky';
// ['Alice', 'Bob', 'Jacky']

.push()
The .push() method of JavaScript arrays can be used to add one or more elements to
the end of an array. .push() mutates the original array and returns the new length of
the array.

// Adding a single element:
const cart = ['apple', 'orange'];
cart.push('pear'); // ['apple', 'orange', 'pear']

// Adding multiple elements:
const numbers = [1, 2];
numbers.push(3, 4, 5); // [1, 2, 3, 4, 5]

.pop()
The .pop() method removes the last element from an array and returns that element.

JavaScript

JavaScript

const ingredients = ['eggs', 'flour', 'chocolate'];

const poppedIngredient = ingredients.pop(); // 'chocolate'
console.log(ingredients); // Prints: ['eggs', 'flour']
console.log(poppedIngredient); // Prints: 'chocolate'

Loops
Introduction
A loop is a programming tool that is used to repeat a set of instructions. Iterate is a
generic term that means “to repeat” in the context of loops. A loop will continue to
iterate until a specified condition, commonly known as a stopping condition, is met.

While Loop
The while loop creates a loop that is executed as long as a specified condition
evaluates to true. The loop will continue to run until the condition evaluates to false.
The condition is specified before the loop, and usually, some variable is incremented or
altered in the while loop body to determine when the loop should stop.

let i = 0;

while (i < 5) {
 console.log(i);
 i += 1;
}

// Output: 0, 1, 2, 3, 4

For Loop

JavaScript

JavaScript

A for loop declares looping instructions, with three important pieces of information
separated by semicolons ;:

●​ The initialization defines where to begin the loop by declaring (or referencing) the
iterator variable

●​ The stopping condition determines when to stop looping (when the expression
evaluates to false)

●​ The iteration statement updates the iterator each time the loop is completed

for (let i = 0; i < 4; i += 1) {
 console.log(i);
};

// Output: 0, 1, 2, 3

Break Keyword
Within a loop, the break keyword may be used to exit the loop immediately, continuing
execution after the loop body. Here, the break keyword is used to exit the loop when i
is greater than 5.

for (let i = 0; i < 99; i += 1) {
 if (i > 5) {
 break;
 }
 console.log(i)
}

// Output: 0 1 2 3 4 5

	JavaScript
	General
	Introduction
	Comments
	console.log()

	Variables
	Introduction
	Declaring Variables

	Data Types
	Introduction
	Strings
	Numbers
	Booleans

	Conditionals
	Introduction
	Comparison Operators
	if Statement
	else Statement
	else if Clause

	Logical Operators
	Introduction
	Logical Operator !
	Logical Operator ||
	Logical Operator &&

	Functions
	Introduction
	Function Declaration
	Calling Functions
	Function Parameters (OPTIONAL, ADVANCED)
	return Keyword (OPTIONAL, ADVANCED)
	Arrow Functions (OPTIONAL, ADVANCED)

	Arrays
	Introduction
	Index
	.length
	Mutable
	.push()
	.pop()
	

	Loops
	Introduction
	While Loop
	For Loop
	Break Keyword

