TODO: Add description per project

GW anomaly detection

Description:

Code:

Github: katyagovorkova/challenge datasets: Put together scripts used to make

datasets for LIGO AD A3D3 Challenge -

https://github.com/katyagovorkova/challenge datasets

Codelab: LIGO transformer-based classifier.ipynb - Colaboratory -

LIGO_transformer-based_classifier.ipynb Dataset: MIT student / also new student

Previous documentations: arxiv.org/pdf/2309.11537.pdf -

https://arxiv.org/pdf/2309.11537.pdf

Assignee:

SPVCNN clustering

Description:

Code: https://github.com/mit-han-lab/spvnas-dev

Dataset: MIT student / also new student

Previous documentations:

Assignee:

SPVCNN vertexing

Description:

Code: https://github.com/mit-han-lab/spvnas-dev

Dataset: <u>HEP_Repo/SPVCNN at master · hrzhao76/HEP_Repo-https://github.com/hrzhao76/HEP_Repo/tree/master/SPVCNN</u>

Previous documentations:

Assignee:

GNN/Transformer for LRT (Large Radius Tracking)

Description:

Code: also have code

Dataset:

Previous documentations: Assignee: NTU group

Higgs Missing Mass regression

Description:

Code: Dataset:

Previous documentations:

Assignee:

Sensitivity study for H->aa->4b

Description:

Code: https://github.com/mit-han-lab/spvnas-dev

Dataset: MIT student / also new student

Previous documentations: Arix: SPARNET paper from NTU

Assignee:

CPEC (Circular Electron Positron Collider) color singlet identification (CSI)

Description:

ZH pair production at threshold, back to back production, no boosted Hggs,

Code:

Dataset:

Previous documentations:

Assignee:

CEPC (Circular Electron Positron Collider) pi zero reconstruction

Description:

Code:

Dataset:
Previous documentations
Assignee:

Unbinned MoDe (Moment Decomposition)

Description: This is a decorrelation method (https://arxiv.org/abs/2010.09745) that scales well and has few tunable parameters. It is also the only method that I know of that can go beyond strict independence. However, the existing method requires estimating the conditional CDF in bins of mass. It would be awesome to remove that restriction!

Code:
Dataset:
Previous documentations:
Assignee:

Regularization for likelihood ratio estimation

Description: I've been thinking for a while about applying a method like https://arxiv.org/abs/2112.00038 to the problem of likelihood ratio estimation for unfolding or anomaly detection. I think this could be quite impactful if it allows us to impose physics priors in order to enhance sensitivity for the same size data.

Code:
Dataset:
Previous documentations:
Assignee: