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Overview 
 
Implement a Hugging Face Model Handler in Apache Beam Python SDK to download and load models from 
Hugging Face Models Hub by just specifying the model name and model class. We would build different model 
handlers from different input types like tensors and numpy. The model handler for torch.Tensor and 
tensorflow.Tensor will be the same. Using this model handler, users would be able to use RunInference 
transform by loading the models directly from the Hugging Face. This is a nice usability win in the current 
scenario, we need to download the model first and then use TensorFlow / PyTorch model handler for 
inference. 
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Goals 
-​ Implement HuggingFaceModelHandler to load models from Hugging Face Models Hub.  
-​ Support for tf.Tensor, torch.Tensor, and numpy input types.  

Non-goals 
-​ Hugging Face pipeline() support is not part of this work 

 

Background 

 
This document uses the RunInference API described in  to support a RunInference: ML Inference in Beam
new Hugging Face Model Handler. Currently, we have support for model handlers for Tensorflow, PyTorch, 
Sklearn, TensorRT, XGBoost, and ONNX.  
 
In the current scenario, if a user wants to use a model from Hugging Face with RunInference transform they 
would first need to download the model from the hub manually. Next, they have to use either Tensorflow or 
PyTorch model handlers for RunInference. 
 

# Download and save model from Hugging Face Hub. 

https://docs.google.com/document/d/1bVMU7Uo9Nzuu6aXR702j74nhQK4j6J1lkRVVBRySI0g/edit#
mailto:author.a@example.org
https://huggingface.co/
https://huggingface.co/models
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://pytorch.org/docs/stable/tensors.html
https://huggingface.co/docs/transformers/main_classes/pipelines
https://github.com/apache/beam/blob/master/examples/notebooks/beam-ml/run_inference_generative_ai.ipynb


model = AutoModelForSeq2SeqLM.from_pretrained( 

        model_name, torch_dtype=torch.bfloat16 

    ) 

torch.save(model.state_dict(), state_dict_path) 

 

 

# Pass this saved model path to the PyTorchModelHandler for RunInference 

# along with model class and other config parameters. 

model_handler = PytorchModelHandlerTensor( 

            state_dict_path=state_dict_path, 

            model_class=AutoModelForSeq2SeqLM.from_config, 

            model_params={"config": AutoConfig.from_pretrained(model_name)} 

            ) 

 

predictions = RunInference(model_handler) 

 
While using Hugging Face in a ML pipeline without beam it looks like: 

# load the model 

model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.bfloat16) 

predictions = model(input) 

 
We can clearly see the amount of extra steps that we need to do to use models from Hugging Face Hub in 
RunInference as compared to a normal Hugging Face pipeline. Implementation of a dedicated model handler 
for Hugging Face would bridge this gap and users can directly provide the name of the model they want to use 
from Hugging Face and rest will be taken care of by the model handler. 
 
With a Hugging Face model handler for RunInference it would look like: 

model_handler = HuggingFaceModelHandlerTensor(model_name=model_name,              

                                              model_class=AutoModelForSeq2SeqLM,​
                                              load_model_args={"torch_dtype": torch.bfloat16}) 

prediction = RunInference(model_handler) 

which is a huge usability win. 

 

Implementation Details 

 

Proposal: 
To use models from Hugging Face for any kind of inferences, we need at least two pieces of information - 
model_name from the Hugging Face Models Hub and base_model_class. 
 
For our model handler we will allow users to pass the model_class they want to use and the model_name. 
This is similar to what we already do in our PyTorchModelHandler where we ask the user the path to saved 
weights and model class. This is because the model_class is architecture to do a specific task. There can be 
different models/checkpoints trained for that specific task which could be loaded into that architecture. 
 

https://huggingface.co/models
https://github.com/apache/beam/blob/561870be80cc8696a926d7322b0f47ddeddcc222/sdks/python/apache_beam/ml/inference/pytorch_inference.py#L184


model_class here can be anything from transformers library like AutoModelForMultipleChoice and the 
model name is the repository id from the Hugging Face Hub.  
 
We would then load the saved model from the model_name into the base class provided using the 
from_pretrained method provided by the Hugging Face. 

base_class.from_pretrained(model_name) 

 
Eg: 
For a sequence classification task users could use AutoModelForSequenceClassification as the base 
class and bert-base-cased as the model_name. Now, in case of a custom checkpoint that a user may have 
for this model, they could instead specify that model name. 
 

# loading pretrained model with bert-base-cased 

model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased") 

 

# loading custom checkpoint from Hugging Face Models Hub 

model = AutoModelForSequenceClassification.from_pretrained("stevhliu/my_awesome_eli5_mlm_model") 

 

# loading bert-base-cased checkpoint for masked language modeling 

model = BertForMaskedLM.from_pretrained("bert-base-cased") 

 

# loading image processor model with VisualBert 

model = VisualBertModel.from_pretrained("uclanlp/visualbert-vqa-coco-pre") 

 
Users could choose the kind of inference they want to do by providing the appropriate model class and the 
checkpoint for that model. It is possible to use model_class like VisualBertModel with different 
checkpoints/models available on Hugging Face Hub. To allow users to use it flexibly, we would need to get 
both the model_class and model_name on the hub from the users. 
 
For the users it would looks like this: 

model_handler = HuggingFaceModelHandlerTensor(model_name="repo/masked_language_model",            

                                              model_class=AutoModelForMaskedLM) 

prediction = RunInference(model_handler) 

 
This is fairly simple to use and preserves the usability win that comes with HuggingFace. 
 
We can allow additional kwargs for model specific config options users want to provide. These kwargs should 
be populated with the parameters of from_pretrained() from the Hugging Face. 

 

Alternative 1: 
 
Users will pass the repo-id and filename to download from the Models Hub, we can instead use the 
AutoModel classes of Transformer from Hugging Face. AutoModel for PyTorch and TFAutoModel for 
TensorFlow.  

 

https://huggingface.co/docs/transformers/v4.17.0/en/index
https://huggingface.co/docs/transformers/autoclass_tutorial
https://huggingface.co/docs/transformers/model_doc/auto#transformers.AutoModel.from_pretrained
https://huggingface.co/docs/transformers/v4.28.1/en/model_doc/auto#transformers.AutoModel
https://huggingface.co/docs/transformers/v4.28.1/en/model_doc/auto#transformers.TFAutoModel


Users can then just pass the model name like roberta-large and we can do 
TFAutoModel.from_pretrained(‘roberta-large’) in our load_model() method. 
 

This is a cleaner approach in terms of UI. The only cons is that we won’t be reusing existing model handlers. 
 
For the users it would look like this 

model_handler = HuggingFaceModelHandlerTensor(model_name="roberta-large") 

 
In this approach, Hugging Face takes care of downloading and loading the model for inference, so you don't 
need to worry about state_dict_path for pytorch, model_uri for TensorFlow models, and other parameters 
required for their specific framework.  
 
To use this approach, we will need to provide a Hugging Face auth token and the framework that we want to 
use. This is because Hugging Face uses different classes for PyTorch and TensorFlow models. However, we 
can avoid providing the framework argument if we only allow Tensors as input. In this case, Hugging Face will 
infer the framework from the type of Tensor - torch.Tensor and tensorflow.Tensor. 
 
The alternative 1 seems more easy for users to use because they would have to remember less beam specific 
things and can mostly use the kwargs to provide Hugging Face specific args. 
 
The disadvantage of using AutoModel is that when using from_pretrained it skips the classifier layer and 
dropout.  
 

Some weights of the model checkpoint at stevhliu/my_awesome_eli5_mlm_model were not used when 

initializing RobertaModel: ['lm_head.dense.weight', 'lm_head.dense.bias', 

'lm_head.layer_norm.bias', 'lm_head.layer_norm.weight', 'lm_head.bias'] 

- This IS expected if you are initializing RobertaModel from the checkpoint of a model trained 

on another task or with another architecture (e.g. initializing a BertForSequenceClassification 

model from a BertForPreTraining model). 

- This IS NOT expected if you are initializing RobertaModel from the checkpoint of a model that 

you expect to be exactly identical (initializing a BertForSequenceClassification model from a 

BertForSequenceClassification model). 

 
Due to which, it gives the last_hidden_state and pooler_ouput tuple as the output (and other details like 
attention_mask for different kinds of models as configured). 
 
This means that users would have to write their own sort of output layer for the model which isn’t ideal and 
takes away the usability win of using Hugging Face in the first place.  
 

Alternative 2: 

 
Hugging Face model handlers make it easy for users to reuse pretrained models from the Hugging Face 
Models Hub. All the user needs to provide is the name of the repository and the file name for the pretrained 
model and an auth token. 
 
We will use the huggingface_hub client library’s method hf_hub_download() to download the weight of 
models from the hub. 



 
For example, let’s look at the roberta-large model on the hub: 
It has a tab for Files and versions where you can see all the files for pretrained models. 

 
In this case, the repository id is roberta-large and the filename would be tf_model.h5 for TensorFlow 
model. 
 
The HuggingFaceModelHandler will have a class variable that will be instantiated with the inferred 
framework’s model handler.  
 
 
But the problem with this approach is that each model handler have different input parameter requirements - 
for example, in TFModelHandlerNumpy, we need model_uri, create_model_fn, and ModelType in one of 
the ways of loading model while PyTorchModelHandlerTensor needs an uri and model_class. There are 
other optional parameters as well which may differ. This makes it difficult for the HuggingFaceModelHandler to 
generalize different kinds of input to be passed to the underlying model handler. 
 
To resolve this we have two options: 

1.​ Use a class-like object as a parameter to the HuggingFaceModelHandler which defines the framework 
specific details. For example, PytorchModelHandlerTensor has state_dict_path, model_class, 
model_params as inputs with other optional types. We can bundle them up in a single class like 

https://huggingface.co/roberta-large


class PyTorchMetadata(NamedTuple): 

  model_class: torch.Module 

  model_params: Dict[str, Any] 

  … 

  … 

The advantage of this approach is that the users can know the details they would like to provide by 
doing PyTorchMetadata.model_class. 
The cons of this approach is that we are introducing additional data structure for users to look at.   
 

2.​ Use a kwargs dictionary similar to what we use in load_model and run_inference methods. 
In this approach, users would have to look at the desired framework’s model handler and pass in the 
required parameters except the one where they need to pass the path to model weights. 

 
In addition to this, Hugging Face auth token needs to be passed when required. 
 
 
 

Extension to Base Model Handler 

Hugging Face Pipeline Support 

 
Hugging Face Pipelines are a higher level abstraction of a series of steps - tokenizing, loading the model, 
running inference,  de-tokenizing - for specific tasks. It enables users to do inference in just a few lines. 
  
Example: To do a text-classification task, we just need to do 

>> from transformers import pipeline 

>> model = pipeline("text-classification") 

>> model("It is a good day") 

[{'label': 'POSITIVE', 'score': 0.99}] 

 
In the above case, the pipeline used a default model for text-classification task defined in the Hugging Face. To 
specify a different model, it looks like 

model = pipeline(task="text-classification", model="roberta-large-mnli") 

 
Some models on Hugging Face Models Hub already define the task that they are trained for. In such cases 
there is no need to specify the task separately. You can just write it as 

model = pipeline(model="roberta-large-mnli") 

 
To create a model handler for pipeline support, we would need either of these two - model or task to load the 
model. In addition to this, there are other optional parameters like config, tokenizer, framework, etc which 
could be passed to the pipeline(). We can pipe these through using the load_pipeline_args dictionary. 
We will need to validate that either a task or model is passed to the class while instantiating.  
 
pipeline() return the model instance which can be returned from the load_model() function of the model 
handler. 

https://huggingface.co/docs/transformers/main_classes/pipelines#pipelines
https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.pipeline


 
The input type for the model handler would be just string as it is for usual Hugging Face Pipelines usage. 
String input works nicely for text related tasks. For images and audio related tasks, users can just pass a string 
path to the files and the pipeline wrapper takes care of the rest of the processing.   
 
Examples for Image Segmentation task with Hugging Face Pipelines: 

classifier = pipeline(model="facebook/detr-resnet-50") 

output = classifier("gs://gcs-bucket/bird.png") 

 
Similarly, we could provide a path to the audio file to do audio related tasks. 
 
We can specify the framework to use by using the load_pipeline_args dict. pipeline() provides a 
parameter for specifying it - framework: ‘pt’ for PyTorch or ‘tf’ for TensorFlow. If nothing is 
specified, it will default to the one that is installed. If both are installed then it will default to the framework of the 
model or to PyTorch if no model is specified. 
 
We could write a model handler for this as  

class HuggingFacePipelineModelHandler(ModelHandler[str, 

                                                   PredictionResult, 

                                                   Pipeline]): 

  def __init__( 

      self, 

      task: str = None, 

      model=None, 

      *, 

      inference_fn: Optional[Callable[..., Iterable[PredictionT]]] = None, 

      load_pipeline_args: Optional[Dict[str, Any]] = None, 

      inference_args: Optional[Dict[str, Any]] = None, 

      min_batch_size: Optional[int] = None, 

      max_batch_size: Optional[int] = None, 

      large_model: bool = False, 

      **kwargs): 

        … 

        … 

 
 
With the approach, the RunInference call looks like 

model_handler = HuggingFacePipelineModelHandler(task="text-classification",  

   load_pipeline_args={'framework': 'pt'}) 

 

output = pipeline  

                  | beam.Create(["It is a good day"]) 

                  | RunInference(model_handler) 

 

ModelOutput Return Type 

 

https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.ImageClassificationPipeline
https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AudioClassificationPipeline


Hugging Face models output the prediction in the form of ModelOutput class. It is just OrderedDict that 
defines various output values like loss, score, etc.  
For example, in case of a masked language model 
 
The Hugging Face pipeline is - 

model = AutoModelForMaskedLM.from_pretrained("stevhliu/my_awesome_eli5_mlm_model") 

prediction = model(**input) 

 
with prediction as  

​​MaskedLMOutput(loss=None, logits=tensor([[[-0.1248,  0.0000,  0.0524,  ..., -0.1736, -0.1838, 
-0.3950], 

         [ 0.6857,  0.0000,  0.3641,  ..., -0.3146,  0.6410,  0.8473], 

         [-0.5218,  0.0000, -0.1220,  ..., -0.1641, -0.0437, -0.1125], 

         ..., 

         [-0.3393,  0.0000, -0.1739,  ..., -0.3465,  0.5032,  0.4917], 

         [ 0.4458,  0.0000, -0.1290,  ...,  0.5043,  0.2980,  0.2150], 

         [-0.4792,  0.0000,  0.7597,  ..., -0.5056, -0.6125,  0.7951]]], 

       grad_fn=<ViewBackward0>), hidden_states=None, attentions=None) 

 
With our model handler, 

model_handler = HuggingFaceModelHandlerTensor(model_uri="stevhliu/my_awesome_eli5_mlm_model", 

                                              model_class=AutoModelForMaskedLM) 

 

prediction = (pipeline | beam.Create(["The capital of France is Paris."]) 

                       | RunInference(model_handler) 

 
 the ModelOutput type prediction is assigned to the inference field of PredictionResult as 

PredictionResult( 

 

example={'input_ids': tensor([    0,   970,    32,   195, 29472,   261,  7046,    15,    42, 

14262, 

        50264,     4,     2]), 'attention_mask': tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1])},  

 

inference=MaskedLMOutput(loss=None, logits=tensor([[[20.4482, -4.8258, 17.9683,  ..., -0.2959,  

1.8380,  9.0381], 

         [ 3.2331, -5.4753, 16.6446,  ..., -0.7833, -0.8888,  2.2015], 

         [-1.1801, -5.6766,  9.9048,  ...,  1.3851, -3.0148,  0.2140], 

         ..., 

         [-5.1801, -5.1109,  5.8191,  ..., -5.9792, -4.8173,  0.6445], 

         [ 8.8481, -5.5120, 17.3786,  ..., -2.0276, -0.2673,  2.8984], 

         [ 5.7127, -5.6760, 25.9026,  ..., -3.1510, -4.7130,  4.8339]]]), hidden_states=None, 

attentions=None),  

 

model_id=None) 

 
We already have a return type PredictionResult in place for our model handlers. We could just wrap the 
model output object to the inference field of PredictionResult. Having a specific output type for 

https://huggingface.co/docs/transformers/v4.30.0/en/main_classes/output#transformers.utils.ModelOutput
https://github.com/apache/beam/blob/29ea1e2f804258689c8aeafa0df2261be9b205b2/sdks/python/apache_beam/ml/inference/base.py#L77


HuggingFaceModelHandler is not adding too much additional value. Most importantly, it aligns with all our 
model handlers as well. 
 
 
 
 
 

Mass Model Download  

 
In general, there is no explicit rate-limiting specified for downloading the models from Hugging Face Models. 
But for the Inference API, there is a limit of 10k requests suddenly. The time frame for the rate is not clearly 
defined here. 
 
Hugging Face provides a way to save the loaded models locally using save_pretrained()  

https://huggingface.co/docs/api-inference/faq#rate-limits
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