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Executive Summary 

Design Problem 
The design problem at hand involves the development of a high-performance RISC-V CPU 
architecture adhering to specific constraints and requirements. Central to this endeavor is the 
implementation of a 5-stage RISC-V pipeline utilizing Verilog or SystemVerilog, with options 
for structural or behavioral modeling approaches. The pipeline architecture encompasses key 
stages—Instruction Fetch, Instruction Decode, Execute, Memory Access, and Write Back—each 
performing essential functions in the instruction execution process. 

A primary focus of the design problem is the effective resolution of hazards within the pipeline 
through the implementation of forwarding and stall mechanisms. Forwarding paths must be fully 
provided to ensure seamless data flow and prevent pipeline stalls, enhancing overall performance 
and efficiency. Furthermore, the CPU design must integrate support for RISC-V integer multiply 
instructions to expand its computational capabilities and versatility. 

Synthesis of the pipeline processor using Cadence's Genus tool is a key requirement, facilitating 
efficient hardware synthesis and optimization processes. 

The design problem also entails meeting specific performance metrics, including a minimum 
operating frequency of 800MHz and constraints on chip area relative to frequency. Additionally, 
the CPU implementation must pass provided test cases, validating its functionality and 
performance in executing complex computational tasks. 

Finally, the CPU must also contain a surprise factor that provides an increase of performance on 
one of the following metrics: cycles taken, cycle time, power consumption, or number of gates 

By addressing these design challenges and requirements, the aim is to develop a robust and 
efficient RISC-V CPU architecture capable of meeting the demands of modern computing 
applications while ensuring compatibility with industry-standard design practices and synthesis 
tools. 

Design Approach 
The main approach that was taken to build the processor was to use Test Driven Development 
(TDD) in order to add full forwarding and the surprise factor, which was unanimously decided to 
be a branch predictor. For a deeper understanding of TDD, refer to the Engineering Standards 
 section. 
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During the development of the initial 5-stage pipelined CPU, a primary focus was placed on 
maximizing the simplicity of debugging by keeping all components loosely coupled. This 
approach led to the creation of separate modules within the top-level architecture of our 
pipelined CPU. The design incorporated one module dedicated to each of the five pipeline 
stages, four modules dedicated to facilitating seamless data transfer between the stages, and a 
module each for detecting and handling stalls as well as managing forwarding mechanisms. This 
modular design strategy not only enhances the clarity of the overall architecture but also 
streamlines the debugging process, enabling efficient identification and resolution of any 
potential issues. 
 
While there are multiple methods of implementing full forwarding, the method that was chosen 
was to forward data from the end of EX and MEM stages into a multiplexor (MUX) at the end of 
the ID stage, as shown in Figure 1. This MUX chooses either the register file’s data, the data 
outputted from the ALU, or the data retrieved from memory. The signal that controls the MUX 
depends on the potential data hazards and is determined by the Forwarding Unit. This logic is 
present for both registers. 
 

 
Figure 1: An Image Describing the Forwarding Path Used in the CPU 

 
There are many types of branch predictors; however, we chose to implement a 2-bit branch 
predictor because it is relatively simple to implement for the increase in speed it provides. The 
finite state machine (FSM) for a 2-bit predictor only involves four states, and the logic can be 
seen in Figure 2 below. 
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Figure 2: Finite State Machine of 2-Bit Branch Prediction 

 

While our design achieves the specified requirements for area and power, there are areas where 
further improvement could enhance its performance. 

The benefits of our design include: 

●​ Fulfillment of all specified requirements, including support for required instructions and 
synthesizability with Cadence's Genus. 

●​ Incorporation of full forwarding, enhancing data flow efficiency. 
●​ Implementation of a 2-bit branch predictor, contributing to increased processor speed. 

However, it's essential to acknowledge certain limitations: 

●​ Possibility of optimization in certain design aspects (ALU, branch predictor, etc) for 
further performance enhancement. 

●​ Lack of I/O ports, sensors, or physical design hinders practical applicability for various 
computing environments. 

Potential improvements are discussed further in the Broader Considerations section.  
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Body 

Introduction 
Considering the initial constraints, our first task consisted of constructing a five-stage RISC-V 
CPU using Verilog. Both members of our team had prior experience from COMP_ENG 361 in 
the fall, where one of the labs involved transitioning a single-cycle CPU into a five-stage 
pipelined CPU. Consequently, this task proved comparatively straightforward, merely requiring a 
straightforward git pull from the previous quarter's code repository. Given that Daniel and 
Sebastian had worked in separate groups during the course, Daniel's code was selected for its 
clarity and ease of modification. 
 
From this point onward, Daniel's Verilog code, referred to interchangeably as the processor or 
CPU, shares similarities with the following two designs: 
 

 
Figure 3: A Figure showing the layout of an non-pipelined five stage Pipelined CPU (Mallidu 

and Siddamal) 
 
Similar to the design depicted in Figure 3, our CPU aims to minimize cycle time while 
optimizing each stage of the processor for maximum efficiency. Although it's feasible to move 
branch calculations within the ID (Instruction Decode) stage, doing so would necessitate fetching 
data from the register file, comparing values, and determining branch outcomes, all in the same 
cycle. This duplication of effort in ID basically mirrors the function of the ALU in the EX 
(Execute) stage, potentially exacerbating our critical path. After careful consideration of the 
tradeoffs, we opted for an additional stall cycle for mispredicted branches over risking a global 

8 



slowdown. The IF (Instruction Fetch), ID, and MEM (Memory) stages are primarily constrained 
by data access times, so it is unwise to introduce additional computations beyond essential 
functions like MUXes for full forwarding and basic adders for target address calculations. In 
contrast, the EX and WB stages require minimal adjustment or optimization, resulting in 
functionality akin to that depicted in Figure 3. 
 

 
Figure 4: A figure showing the layout of a pipelined five stage CPU (“A Block Diagram of 

Typical Five-Stage Pipelined Processor...”) 
 
As mentioned in the executive summary, the processor is defined by its 5 stages (IF, ID, EX, 
MEM, and WB), with four pipeline registers between to facilitate the flow of data and control 
signals throughout the stages. However, one difference is that the processor depicted in Figure 3 
includes a branch predictor that contains a prediction cache for every branch instruction inside of 
the CPU. While this would make branching incredibly fast, it would have slowed down our 
critical path and in turn made our clock frequency, currently at 800MHz, fail to meet the 
minimum requirements. This was one of the main reasons we opted for a 2-bit branch predictor 
instead, which provided a notable increase in performance over the previous method of handling 
branches, which was to predict always not taken.  
 
The final key difference between our design and Figure 3 was the placement of the full 
forwarding module, which was chosen to be at the edge of ID in order to simplify the debugging 
process for data flowing beyond the EX stages. 
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Design Constraints and Requirements 
In developing the RISC-V CPU, a set of stringent constraints and requirements were established 
to guide the design process. These constraints ensure the adherence to specific design principles 
while meeting essential performance metrics and compatibility criteria. Below is a 
comprehensive overview of the design constraints and requirements imposed on the RISC-V 
CPU: 

1.​ Implementation Language and Models: 
○​ The RISC-V CPU must be implemented using either Verilog or SystemVerilog. 
○​ The design can be realized through either structural or behavioral modeling 

paradigms, providing flexibility in the design approach while maintaining 
compatibility with the target hardware description languages. 

2.​ Pipeline Architecture: 
○​ The CPU architecture must adhere to a 5-stage RISC-V pipeline model, 

comprising Instruction Fetch (IF), Instruction Decode (ID), Execute (EX), 
Memory Access (MEM), and Write Back (WB) stages. This architectural 
framework ensures efficient instruction execution and data processing. The 
behaviors of each stage are defined below, in Table 1. 

Pipeline Stage Short Name Function 

Instruction Fetch IF Fetch the instruction that is being pointed to by PC 

Instruction Decode ID Decode the instruction, get register data from the GPR 
file, generate control signals 

Execute EX Choose data sources to enter into the ALU, an ALU 
with support for all Register-Type instructions 

Memory Access MEM For load and store instructions, store/load the related 
information into memory 

Write Back WB Write back the data into the Reg-File 

Table 1: A Table Describing All of the Stages of the Pipeline According to the Design Problem 
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3.​ Forwarding Paths: 
○​ The CPU design should fully provide all forwarding paths to ensure seamless data 

flow and prevent pipeline stalls. By enabling data forwarding between pipeline 
stages, the processor minimizes latency and maximizes throughput, enhancing 
overall performance. 

4.​ Hazard Resolution: 
○​ The design must employ forwarding and stalls to resolve all hazards effectively. 

Forwarding mechanisms enable the forwarding of data directly from the execution 
stage to the instruction decode stage, mitigating potential data hazards and 
enhancing pipeline efficiency. 

5.​ Instruction Set Support: 
○​ The RISC-V CPU must incorporate support for RISC-V integer multiply 

instructions, expanding the instruction set architecture to accommodate diverse 
computational requirements and facilitate efficient algorithm execution. Table 2 
details all of the required instructions that must be supported. 

Instruction Type Required Instructions 

Register-Type add, sub, sll, slt, sltu, xor, srl, sra, or, and 

Register-Type (Multiply) mul 

Immediate-Type addi, slti, xori, ori, andi, slli, srli, srai 

Immediate-Type (Load) lb, lh, lw, lbu, lhu 

Store-Type sb, sh, sw 

Branch-Type beq, bne, blt, bge, bltu, bgeu 

Jump-Type jal, jalr 

U-Type lui, auipc 

Table 2: A Table Displaying All of the Instructions that need to be supported 
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6.​ Synthesis: 
○​ Cadence's Genus tool must be utilized for synthesizing the processor. This ensures 

compatibility with industry-standard synthesis tools and facilitates efficient 
hardware synthesis and optimization processes. 

7.​ Performance Metrics: 
○​ The CPU implementation must meet specific performance metrics to ensure 

optimal functionality and compatibility with target applications: 

 𝑓𝑚𝑖𝑛 = 800𝑀𝐻𝑧

 𝐴𝑟𝑒𝑎𝑚𝑎𝑥|(𝑓 = 800𝑀𝐻𝑧) = 30, 000 μ𝑚2

 𝐴𝑟𝑒𝑎𝑚𝑎𝑥|(𝑓 > 800𝑀𝐻𝑧) = 16193. 25𝑒0.000778𝑓 μ𝑚2

■​ Where  is the minimum operating frequency, and  is the 𝑓𝑚𝑖𝑛 𝐴𝑟𝑒𝑎𝑚𝑎𝑥

maximum area @ . 𝑓𝑚𝑖𝑛
■​ Alternatively, if the processor is run at a higher frequency, the third 

equation is provided to calculate the maximum area at that frequency. 
○​ Imposing a constraint on chip area optimizes resource utilization and minimizes 

manufacturing costs. Meeting these performance metrics is crucial for ensuring 
the competitiveness and viability of the CPU architecture in diverse computing 
environments. 

8.​ Test Case Requirements: 

○​ The CPU implementation must pass two provided test cases, consisting of 
microbenchmarks designed to evaluate the processor's performance in calculating 
a Fibonacci number. These test cases serve as benchmarks for assessing the CPU's 
functionality, efficiency, and accuracy in executing complex computational tasks. 

By adhering to these design constraints and requirements, the development of the RISC-V CPU 
aims to achieve a robust, efficient, and high-performance processor architecture that meets the 
demands of modern computing applications while ensuring compatibility with industry-standard 
design practices and synthesis tools. 
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Engineering Standards 

Test Driven Development 
From the advice of Prof. Panitan, we followed the Test Driven Development guidelines for this 
project. This approach simplified and accelerated bug detection, enabling us to quickly identify 
the source of errors from a concise list of potential causes. 

 
Figure 5: A Figure Explaining Test Driven Development (Hanes) 

 
In TDD, tests are written before the actual code. The methodology involves writing a test for 
each piece of desired functionality, running the test (which initially fails), implementing the code 
to pass the test, rerunning the test (which should now pass), and finally refactoring the code if 
necessary. By following TDD, we ensured that our code met specific requirements outlined by 
tests, resulting in cleaner, more modular code with fewer bugs. 
 

 
Figure 6: An Figure Showing an Example of A Simple Test Case to Pass 

 
Before diving into implementing new features, we needed to ensure that the original 
functionality of the CPU remained intact. The test case depicted in Figure 6, a basic add 
instruction (add x2, x3, x4), served as our initial litmus test, guaranteeing the correct execution 
of fundamental operations before proceeding. Subsequently, we expanded the scope of testing by 
executing sequences of add instructions in succession, introducing branching statements between 
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instructions, and finally integrating a single instance of forwarding. Only after rigorously 
completing these preliminary tests did we proceed to evaluate each type of forwarding—EX-EX, 
MEM-EX, and MEM-MEM—both individually and in concert. Following thorough testing, 
encompassing both our basic and advanced benchmarks (detailed in the Benchmarks section), we 
can confidently assert that our CPU is devoid of bugs for the most common use cases. However, 
it's important to note that while extensive testing significantly reduces the likelihood of 
encountering bugs, absolute bug-free assurance remains elusive, despite our exhaustive efforts 
spanning thousands of lines of assembly code. 
 

Example of Test Driven Development 
 
When developing full forwarding, we ran into three interesting problems with our first attempt: 
 

 
Figure 7: A Figure Showing the First Attempts at Full Forwarding 

 
According to the testing framework outlined earlier, this code does work up until forwarding 
stacked add instructions. However, when attempting to perform MEM-MEM forwarding and 
EX-EX forwarding at the same time, there are 3 main errors. Firstly, we overlooked the scenario 
where the register being forwarded was x0. Although it might seem illogical to write back to the 
x0 register, the design never validated whether the instructions had the write-back permissions. 
Compounding this issue, the default write-back register for a store instruction is x0, leading to 
both intentional and unintentional writes to x0 being improperly forwarded. This oversight 
became glaringly obvious once fixed, but resulted in numerous test bench failures. After 
addressing these issues, another complication emerged: when a load instruction in the MEM 
stage wrote to the same register as the second input register in the EX stage, and the instruction 
in EX did not write to that register, the CPU erroneously forwarded the data from MEM to ID, 
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only to overwrite it back to its original value in EX. In resolving these three challenges, Seb 
devised a solution that, while effective, was far from elegant. 
 

 
Figure 8: A Figure Displaying The Current Full Forwarding Module 

 

 
Figure 9: A Comparison of the Forwarding Without Optimizations (Left) and With High 

Optimizations (Right) 
 
Upon reviewing Genus’ optimizations of the Forwarding Unit in Figure 9, it looked as if it had 
optimized out/removed most of the gates that were redundant in the logic of the Forwarding 
Unit. The logical checks determining which data to forward accounted for approximately 25% of 
the unit’s overall logic. Consequently, we made the decision to maintain the Forwarding Unit in 
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its current state, prioritizing the synthesis of the CPU and ensuring compliance with design 
requirements. This decision was further reinforced by our adherence to TDD principles, which 
guided us to focus on addressing immediate concerns while maintaining the integrity of existing 
functionality. 
 
 

Broader Considerations 

Commercial Feasibility 
While the processor does work for base RV32I and RV32M instruction sets, there are areas in 
which the CPU falls short. Primarily, there are no I/O ports, sensors, or physical design. This 
would make the practical application of this CPU highly limited, as it cannot be used for desktop 
computers, embedded systems, or FPGA purposes. 
 
However, on the other hand, because it is a virtual representation of a CPU, it is possible to test 
the functionality of an algorithm written in RISC-V for the potential speedup over x86-64 and 
ARM machines. Given that companies like TensTorrent are using RISC-V to develop CPUs, this 
product does have some commercial feasibility for testing the potential cycle speedup between 
the two assembly languages. 
 
Now consider the CPU as a commercial product ready to take off in the market. Adding I/O ports 
becomes essential to improving its usability and attractiveness. These ports would allow for easy 
integration with depth sensors or cameras, meeting the needs of embedded devices that don't 
require Wi-Fi connectivity and need quick storage and single-threading capabilities. 

Ethical Considerations 
As a side effect of manufacturing this CPU, we would need to ensure that the suppliers of the 
materials are sourcing their silicon and other raw materials ethically, there are fair labor laws in 
place and the transportation of the materials doesn’t generate unsustainable amounts of GHG 
emissions.  
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Design description 

Instruction Fetch Stage 

 
Figure 10: A Figure Displaying the Instruction Fetch Module With No Optimizations 

 
The instruction fetch of our CPU is very similar to that of the diagram in Figure 3. It contains the 
Instruction Memory, program counter (PC), PC select, and the target address for the next PC. 
Most of the area inside of the module is logic that determines which PC source to use—the target 
address from EX, the predicted branch location from ID, or the current PC+4 (the next 
instruction in memory). Each signal is 32 bits long, seen in Figure 10.  
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Instruction Decode Stage 

 
Figure 11: A Figure Displaying the Instruction Decode Module With No Optimizations​

 
In Instruction Decode, the biggest stage, we have the Register File, the Control Signal Generator, 
the Immediate Generator, and the Branch Predictor. Also included is the PC Align module, 
which raises an exception (by setting the global halt signal) if the target address calculated ​
from the branch predictor is misaligned.  
 
Inside of the Control Signal Generator, the following signals were generated based on the current 
instruction in the ID stage (set them to 0 if not applicable): 
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Control Signal Purpose 

ImmSel Identifying the form of the immediate (I-Type, B-Type) 

RWrEn Low enabled Register File Write Signal 

ALUSrcA Chooses the Source into the ALU between RegA and PC 

ALUSrcB Chooses the Source into the ALU between RegB and Imm 

MemWrEn Low enabled DMEM (data memory) Write Signal 

WBSel Selects the source of data to be written back between ALU 
out and DMEM out 

MemSize Determines the amount of data to read from DMEM 

Table 3: A Table describing the Global Control Signals used in the Processor 
 
These signals are passed through each of the pipeline registers to the EX, MEM, and WB stages.  
 
Also relevant, but not necessarily part of the ID stage, are the Stall and Forwarding Units. They 
take register data from both the EX and MEM stage and alter the data, if needed, going into the 
EX stage. These modules work together in tandem to resolve read after write (RAW), write after 
read (WAR), and write after write (WAW) data hazards. The Forwarding Unit handles RAW 
hazards by forwarding the result of a previous instruction directly to an instruction that requires 
it, avoiding the need to wait for it to be written back to the register file. WAW hazards are also 
resolved by forwarding, ensuring that the most recent result is available to subsequent 
instructions. 
 
WAR hazards occur when a write to a register follows a read from the same register in another 
instruction, potentially causing incorrect behavior if not handled properly. Full forwarding 
doesn't eliminate WAR hazards because the data being written can't be forwarded to the 
instruction that already read the data earlier. In this case, the Stall Unit will stall until the write 
operation that is causing the hazard has completed. 
 
While there is a global halt signal to inform the user of the CPU that something has gone wrong, 
the CPU is intended to finish all instructions before asserting the halt globally. This means that 
every stage in the pipeline has its own local halt signal that can be triggered either when a 
previous stage in the CPU has raised an exception or when an exception has been raised inside of 
the current stage of the processor. 
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Execute Stage 

 
Figure 12: A Figure Displaying the Execute Module With No Optimizations 

 
The EX stage contains our Branch Unit (BU), which verifies whether the prediction in the 
previous ID stage was correct or not, and the ALU, which handles all required arithmetic.  
 
If there is a branch in EX, and it was predicted correctly as taken, the BU sets control signals to 
squash the instruction directly after the branch instruction in ID, taking a total of two cycles. If 
the branch was predicted correctly as not taken, nothing happens, and the pipeline continues 
loading instructions from the PC+4. If the branch was taken incorrectly, the BU squashes both 
the instruction after the branch in ID and the branched-to instruction in IF, resetting the next 
instruction to PC+4. Finally, if the branch was not taken incorrectly, the BU will squash the same 
two instructions, except this time setting the next PC to where the branch points to. In both the 
incorrect cases, the branch instruction takes three cycles to execute. 
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Memory Access/Writeback Stage 

 
Figure 13: A Figure Displaying the Memory Access Module With No Optimizations 

 
In Memory Access, we have a Size Check module (a memory size & alignment checker), an 
interface to Data Memory, and a sign extender module for the data that was read in. The function 
of these modules is relatively self explanatory: the data is accessed, it’s asserted that nothing 
went wrong while doing so, and it’s propagated into the WB stage for writing to the register file 
as well as into the Forwarding Unit. In WB, we have a MUX that determines the source of the 
data between DMEM out and ALU out and checks that it has permission to write back to the 
register file. If all conditions are met, we do a successful writeback to memory. Also in this 
stage, the local halt signal is finally turned into the global halt that stops the processor if it was 
enabled in any of the stages.  

​
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Performance/Testing 

Timing Report 
Our CPU meets the required clock timing with 0 slack. Displayed in Figure 13 is the timing 
report, given a clock time of 1.25ns (800MHz clock frequency).  

 

Figure 14: A Figure Displaying the Timing Report from Genus 
 

As shown on the right side of Figure 14, the critical path is based on getting the data from the 
register file into the ID/EX register in time for the next clock cycle. This is expected, as the 
signals coming from the start of ID ​ have to traverse through large amounts of transistors to 
grab the correct data in the register file and propagate this information to the registers into EX.  

Area Report 
Given the clock frequency of 800 MHz, our CPU must be under 30,000 square micrometers.  

 
Figure 15: A Figure Displaying the Area report from Genus 

 
As shown in Figure 15, our CPU does meet the requirements with an extra 12962 micrometers to 
spare. This was achieved via using high optimizations for syn_generic_effort, syn_map_effort, 
syn_opt_effort. 
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Figure 16: A Figure Displaying the PipelinedCPU module in Genus 

 
As shown in Figure 16, this is our entire CPU without separations between the different 
submodules. It is very interesting to see that most of the area inside of the is empty. There can 
potentially be higher levels of optimizations to use less control signals in between stages in an 
attempt to make the design use less vertical area and therefore more area efficient, however, the 
CPU does meet the requirements and runs without bugs. 

Benchmarks 
 
In order to test the speed and correctness of our processor, we created two basic benchmarks and 
two advanced benchmarks. Written in RISC-V assembly, some are verifiable through 
comparison of register file or memory values, while others serve as a speed test. 
 
For example, basic benchmark 1 is a two-part test that verifies the handling of data hazards and 
the correctness of register and immediate type instructions. The first part includes edge cases and 
hazards for these instructions, and the second part has the ability to act as a speed test through 
writing bytes to memory. Bytes are initialized in memory as a string of ASCII characters; and, 
when run, the algorithm will capitalize and write them back to memory. With a long enough 
string of bytes, the algorithm can take many cycles; however, basic benchmark 1 was generally 
used to test for register/immediate type correctness (see Appendix n: Basic Benchmark 1).  
 
Conversely, basic benchmark 2 is a speed test with many branches, data hazards and memory 
hazards, but it doesn’t have anything to verify. The algorithm increments a register by a custom 
amount and  loads and stores from memory at a custom frequency until the value in the register 
reaches a custom total number. For consistency, we have kept the increment at 10,000, the 
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load/store frequency every 10 iterations (or until the increment reaches 100,000), and the total 
number at 166,191,000, which, coincidentally, is the annual profit in USD that Northwestern 
University makes from student tuition and housing, as of 2023. Effectively, basic benchmark 2 is 
an algorithm that branches 9 out of 10 times, many many times (See Appendix n: Basic 
Benchmark 2). 
 
In order to see how effective the addition of full forwarding as well as a 2-bit branch predictor is, 
basic benchmark 2 was selected. 
 
After running basic benchmark 2 on the unmodified processor with its default values of 10,000, 
100,000, and 166,191,000, it took 118,004 cycles to finish running.  
 
With the addition of full forwarding and a 2-bit branch predictor, the same code was run, and it 
took 63,161 cycles to execute.  
 
Calculating the Speedup: 

 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =  118004
63161 = 1. 868

 
Because of its frequent data and memory hazards, as well as the sheer volume of branches, it 
makes sense that this benchmark has such a dramatic speedup from the unmodified pipelined 
processor—nearly cutting the execution time in half. 
 
Compare this speedup to the same two versions of the processor running advanced benchmark 2, 
which has no data or memory hazards: 
 
Without full forwarding and branch prediction, advanced benchmark 2 took 1,408,980 cycles to 
execute. With the modifications, it took 1,277,910 cycles. 
 
Calculating the Speedup Again: 

3 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =  1408980
1277910 = 1. 10

 
Without hazards, this speedup is exclusively due to branch prediction. Yet, opposed to basic 
benchmark 2, advanced benchmark 2 is a recursive algorithm, and does not have any loops. 
Assuming that the processor predicts the branch instructions correctly half of the time, then the 
only place where cycles are saved is through  and  instructions, which are always 𝑗𝑎𝑙 𝑗𝑎𝑙𝑟
predicted correctly and save a cycle each compared to the unmodified processor.  
 
If we count the number of regular, jump, and branch instructions, then we could calculate the 
speedup without executing the benchmark. However, with fifteen levels of recursion, counting 
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becomes a little difficult. Instead, we can approximate the speedup using one level of recursion, 
as seen below. 
 
The number of cycles advanced benchmark 2 takes to execute without branch prediction: 
 

 𝑐𝑦𝑐𝑙𝑒𝑠 = ( # 𝑜𝑓 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑖𝑛𝑠𝑡𝑟 * 1) + (# 𝑜𝑓 𝑗𝑢𝑚𝑝𝑠 * 3) + (# 𝑜𝑓 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 * 3)
 = 32 * 1 + 5 * 3 + 2 * 3

 = 53
 

Now, with the branch predictor: 
 

 𝑐𝑦𝑐𝑙𝑒𝑠 = ( # 𝑜𝑓 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑖𝑛𝑠𝑡𝑟 * 1) + (# 𝑜𝑓 𝑗𝑢𝑚𝑝𝑠 * 2) + (# 𝑜𝑓 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 * 2. 5)
 = 32 * 1 + 5 * 2 + 2 * 2. 5

 = 47
 

 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 = 53
47 = 1. 13

​
The projected speedup of 1.13 is slightly higher than the actual speedup of 1.103, but this 
variance is within an acceptable margin of error given the approximation method used and the 
complexity of the benchmark. As a surprise factor, the branch predictor accomplished its task of 
increasing the speed of the processor—through cycles taken.  

The benchmarks provided invaluable insights into the tangible impact of our implemented 
changes and additions to the processor, demonstrating their effectiveness in enhancing both 
speed and correctness under varying computational conditions. 

Functionality Testing/Demo Day 
For the final test of functionality of our CPU, we ran two testbench simulations written by Prof. 
Panitan, fibo10 and fibo10_dp. As witnessed by the Professor, both of these testbenches, when 
run on our CPU, had the correct output memory and registers.  
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Conclusion 
The development of a high-performance RISC-V CPU architecture has been a challenging yet 
rewarding endeavor. By adhering to specific constraints and requirements, we have crafted a 
robust and efficient processor architecture capable of meeting the demands of modern computing 
applications while ensuring compatibility with industry-standard design practices and synthesis 
tools. 
 
Through a meticulous design approach, incorporating Test Driven Development (TDD) 
principles, we have navigated through the complexities of developing a 5-stage RISC-V 
pipelined CPU, emphasizing modularity and simplicity to facilitate debugging and optimization 
processes.  
 
Performance evaluation through timing and area reports, along with extensive benchmarking, 
provides tangible evidence of the processor's capabilities and effectiveness. The successful 
completion of functionality testing, validated by comprehensive testbench simulations, reaffirms 
the reliability and correctness of our CPU architecture. The integration of full forwarding and a 
2-bit branch predictor has significantly enhanced the processor's performance, reducing cycle 
time and increasing overall efficiency by almost double in some programs. 
 
Despite the notable achievements in meeting performance metrics and functionality 
requirements, it's essential to acknowledge areas for future improvement and development in our 
CPU architecture. While our CPU functions correctly, there exists potential for enhancing its 
performance and scalability. 

One avenue for improvement lies in reducing the critical path in the ID stage to achieve a higher 
clock frequency, ideally reaching 1 GHz. By minimizing delays, we could enhance the 
processor's speed and responsiveness. 

A potential development in the future is the implementation of a cache for Data Memory 
(DMEM). Introducing a cache system would mitigate memory access latency, particularly when 
scaling the processor's working memory size into the hundreds of megabytes or gigabytes. By 
incorporating a cache mechanism, we could optimize memory access times and improve overall 
system performance, enabling our CPU to efficiently handle larger and more complex 
computational tasks. 

Developing our CPU has been a difficult task, and it would not have been possible without the 
incredible support of our Professor, Classmates, and most importantly, Ran. 
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Appendix 1: Basic Benchmark 1 
Basic benchmark 1 has two parts in its code: Rainbow and SHOUT. The rainbow section runs 
through every single register and immediate type instruction to check for correctness, and the 
SHOUT section takes in a sequence of ASCII characters and capitalizes them, hence the names.  
 
To verify correctness, run this benchmark with the given input registers and compare x0-x15 
with the output registers. 
 
In the DATA section in memory, a sequence of bytes can be placed, and they will be capitalized 
by the code. The input characters are located at memory address 0x70, and the capitalized 
characters will be stored directly after the end of the input characters. The character length of the 
sequence must be set in x16 before running the code. 
 
As the default example, the characters "65 78 61 6d 70 6c 65" are located in the DATA section in 
memory, and x16 is equal to 7; the number of bytes in the sequence. When the benchmark is run, 
the data right after the above sequence becomes "45 58 41 4d 50 4c 45". Converting to ASCII, 
the input "65 78 61 6d 70 6c65" is "example" and the output "45 58 41 4d 50 4c 45" is 
"EXAMPLE". This sequence can be customized. 
 

Memory Registers 

// Rainbow: 
 
b3 80 10 00 // add x1, x1, x1 
33 01 11 40 // sub x2, x2, x1 
b3 c1 30 00 // xor x3, x1, x3 
33 e2 30 00 // or x4, x1, x3 
b3 f2 12 00 // and x5, x5, x1 
33 13 13 00 // sll x6, x6, x1 
b3 53 33 00 // srl x7, x6, x3 
33 a4 44 00 // slt x8, x9, x4 
b3 b4 44 00 // sltu x9, x9, x4 
93 80 00 22 // addi x1, x1, 0x220 
13 41 31 33 // xori x2, x2, 0x333 
93 e1 01 11 // ori x3, x3, 0x110 
13 72 11 32 // andi x4, x4, 0x321 
93 92 10 00 // slli x5, x1, 0x1 
13 d3 07 01 // srli x6, x15, 0x10 
93 d3 07 41 // srai x7, x15, 0x1 
13 24 f4 ff // slti x8, x8, -0x1 
93 34 f5 ff // sltiu x9, x10, -0x1 

Register inputs: 

x0:  00000000 
x1:  00000001 
x2:  00000002 
x3:  00000003 
x4:  00000000 
x5:  ffffffff 
x6:  00000002 
x7:  00000003 
x8:  00000000 
x9:  ffffffff 
x10: 00000000 
 
x15: 88880000 
x16: 00000007 // length of chars 
x17: 00000070 

Register outputs: 

x0:  00000000 
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// SHOUT: 
 
33 08 18 01 // add x16, x16, x17 
b3 89 09 01 // add x19, x19, x16 
 
6f 00 80 01 // jal x0, cond 
// body: 
03 89 08 00 // lb x18, 0(x17) 
13 79 f9 0d // andi x18, x18, 0xdf 
93 88 18 00 // addi x17, x17, 1 
23 80 29 01 // sb x18, 0(x19) 
93 89 19 00 // addi x19, x19, 1 
// cond: 
e3 16 18 ff // bne x16, x17, body 
 
// halt 
00 00 00 00 
 
////////////////////////////////// 
// data 
65 78 61 6D 70 6C 65 
////////////////////////////////// 

x1:  00000222 
x2:  00000333 
x3:  00000111 
x4:  00000321 
x5:  00000444 
x6:  00008888 
x7:  ffff8888 
x8:  00000000 
x9:  00000001 
x10: 00000000 
 
x15: 88880000 
x16: 00000077 
x17: 00000077 
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Appendix 2: Basic Benchmark 2 
 
Basic Benchmark 2 iteratively adds a custom number (x2) up to a custom total (x5), and will 
store and load the value from memory at a custom milestone. It also stores the sum calculated in 
memory at address 0x20. 
 
These inputs are customizable, but are set at default values. The total is set as the yearly revenue 
made by Northwestern from student tuition and housing ($166,191,000), the iterative number is 
$10,000, and you load and store from memory every $100,000. 
 
Be careful with using really small iterative numbers and really large totals, as you could end up 
taking hundreds of millions of cycles. 
 
The store and load value can be set to the total to test pure addition and branching, and it can be 
set to the iterative number to store and load at every iteration.   
 
Although this benchmark is primarily used as a speed test, to check for correctness with the 
default values, the word at address 0x20 should be equal to 0x09e802c0 after execution. 
 

Memory Registers 

// code: 
33 01 00 00 // add x2, x0, x0 
33 01 11 00 // add x2, x2, x1 
e3 6e 31 fe // bltu x2, x3, -4 
03 22 00 02 // lw x4, 0x20(x0) 
33 02 22 00 // add x4, x4, x2 
23 20 40 02 // sw x4, 0x34(x0) 
e3 64 52 fe // bltu x4, x5, -24 
// halt 
00 00 00 00 
// data: 
00 00 00 00 

x0: 00000000 
x1: 00002710 // 10,000 
x2: 00000000 
x3: 000186A0 // 100,000 
x4: 00000000 
x5: 09e7df98 // 166,191,000 
x6: 00000000 
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Appendix 3: Advanced Benchmark 1 
Advanced Benchmark 1 tests the functionality of forwarding during WAR data hazards, 
branching and branch predictors. The test takes the square value of a number via the multiply 
instruction, and then manually calculates the square of x via adding the value of x onto itself x 
times. This can be used as both a correctness check as well as a speed test. Because it heavily 
involves the multiply instruction, it can also be used to compare different implementations of 
multiplication support.  
 
For its default values, with no forwarding and a Branch Predictor of not taken, the entire program 
takes 28,703 cycles.  
 
This benchmark can be run with dynamically long number of words and dynamic values to be 
squared, for testing the short or long term speedup when implementing new features on the CPU. 
  

Memory Registers 

63 8a 00 04 // beq x1, x0, 84 
33 ae 00 00 // slt x28, x1, x0 
63 12 0e 04 // bne x28, x0, 68 
93 04 40 05 // addi x9, x0, 84 
33 00 00 00 // nop 
 
03 a5 04 00 // lw x10, 0(x9) 
b3 05 a5 02 // mul x11, x10, x10 
 
13 06 05 00 // addi x12, x10, 0 
93 06 00 00 // addi x13, x0, 0 
b3 86 a6 00 // add x13, x13, x10 
33 06 e6 01 // add x12, x12, x30 
e3 1c c0 fe // bne x0, x12, -8 
 
33 67 00 00 // or x14, x0, x0 
63 92 b6 00 // bne x13, x11, 4 
33 67 ef 01 // or x14, x30, x30 
13 07 10 00 // addi x14, x0, 1 
23 a0 e4 00 // sw x14, 0(x9) 
23 91 b4 00 // sh x11, 2(x9) 
b3 80 e0 01 // add x1, x1, x30 
93 84 44 00 // addi x9, x9, 4 
e3 94 00 fc // bne x1, x0, -56 
 
// halt 
AB EE FF C0 
 
// INSERT YOUR FIRST VALUE HERE 

x1: 00000008 - The number of 
words in memory to multiply 
together 
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03 00 00 00 
//INSERT YOUR SECOND VALUE HERE 
05 00 00 00 
// ...you get the pattern 
10 00 00 00 
// another 
19 00 00 00 
// 
00 01 00 00 
// 
ff 00 00 00 
// 
ab 05 00 00 
// 
10 00 00 00 

  makeMemoryFile("mem_in.hex", 

    #0x0 
    HexBigToLilEndian("0x04008c63"), # beq x1, x0, 74               go to debug opcode (ends) 
    HexBigToLilEndian("0x0000ae33"), # slt x28, x1, x0              set 28 to 1 if x1 is less than 0 
    HexBigToLilEndian("0x040e1663"), # bne x28, x0, 76              go to debug opcode (ends) (only if negative) 
    HexBigToLilEndian("0x05800493"), # addi x9, x0, 88              put pointer in x9 
    HexBigToLilEndian("0x00000033"), # nop 
    #20 
    HexBigToLilEndian("0x0004a503"), # lw x10, 0(x9) 
    HexBigToLilEndian("0x02a505b3"), # mul x11, x10, x10 
    #Manual multiplyer 
    HexBigToLilEndian("0x00050613"), # addi x12, x10, 0    setup the iter val 
    HexBigToLilEndian("0x00000693"), # addi x13, x0, 0     setup the tmp val 
    HexBigToLilEndian("0x00a686b3"), # add x13, x13, x10   add to itself 
    HexBigToLilEndian("0x01e60633"), # add x12, x12, x30  subtract 1 
    HexBigToLilEndian("0xfec01ce3"), # bne x0, x12, -8     go up two inst 
    #set the memory to be 1 if they match, 0 if not 
    HexBigToLilEndian("0x00006733"), # or x14, x0, x0      set the reg to be 0 
    HexBigToLilEndian("0x00b69263"), # bne x13, x11, 4     skip if it does match 
    HexBigToLilEndian("0x01ef6733"), # or x14, x30, x30    set the reg to be -1 
    HexBigToLilEndian("0x00100713"), # addi x14, x0, 1     add 1 
    HexBigToLilEndian("0x00e4a023"), # sw x14, 0(x9)       store success bit back into mem 
    HexBigToLilEndian("0x00b49123"), # sh x11, 2(x9)       store the lower half of the word into the high part of mem 
    #go to the next word in memory 
    HexBigToLilEndian("0x01e080b3"), # add x1, x1, x30 
    HexBigToLilEndian("0x00448493"), # addi x9, x9, 4 
    HexBigToLilEndian("0xfc0092e3"), # bne x1, x0, -60 
    HexBigToLilEndian("0xC0FFEEAB"), #debug opcode 
    #Words in mem 
    HexBigToLilEndian("0x00000003"), 
    HexBigToLilEndian("0x00000005"), 
    HexBigToLilEndian("0x00000010"), 
    HexBigToLilEndian("0x00000019"), 
    HexBigToLilEndian("0x00000100"), 
    HexBigToLilEndian("0x00000000"), 
    HexBigToLilEndian("0x00000000"), 
    HexBigToLilEndian("0x00000000"), 
    HexBigToLilEndian("0x00000000") ) 
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​
Appendix 4: Advanced Benchmark 2 
 
For this benchmark, it is important to be familiar with the Towers of Hanoi problem: (“Tower of 
Hanoi”) 
 
In the input registers, x1 is n, or the number of discs in the Towers of Hanoi problem. There are 
three pillars, the source, target, and auxiliary pillar, labeled as tower 1, 3, and 2 respectively. 
These numbers are stored in x2-x4. 
 
The benchmark has the capacity to record the actual "moves" that are made in the Towers of 
Hanoi problem. Each move is stored in memory as half words that can be easily read. These 
halfwords start at memory address 0xb0, and look something similar to 0x0121, or 0x0223. They 
can be read from left to right, for example: 
 
0x0ABC  --> Disc A is moved from tower B to tower C. 
0x0121 --> Disc 1 is moved from tower 2 to tower 1. 
0x0213 --> Disc 2 is moved from tower 1 to tower 3. 
 
As an example, let n be equal to 2. Below is what the starting state looks like, with 2 discs on 
tower 1: 
 

 
 
The first move is 0x0112: 
 

 
 
Next 0x0213: 
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And finally 0x0123: 
 

 
Figures 17-21: A graphical representation of the Towers of Hanoi 

 
For the benchmark itself, n is set to 15 discs. There is nothing to verify; however, execution takes 
over a million cycles—it is used as a speed test. 
 

Memory Registers 

6f 07 40 01 // jal x14, hanoi 
 
00 00 00 00 // code after function call 
00 00 00 00   
00 00 00 00  
00 00 00 00  
 
// hanoi: 
 
93 87 c7 fe   // addi x15, x15, -20 
23 a0 e7 00   // sw x14, 0(x15) 
23 a2 57 00   // sw x5, 4(x15) 
23 a4 67 00   // sw x6, 8(x15) 
23 a6 77 00   // sw x7, 12(x15) 
23 a8 87 00   // sw x8, 16(x15) 
 
93 82 00 00   // addi x5, x1, 0 
13 03 01 00   // addi x6, x2, 0 
93 83 01 00   // addi x7, x3, 0 
13 04 02 00   // addi x8, x4, 0 
 
33 00 00 00   // nop, x9 = 1 
63 86 92 04   // beq x5, x9, output 
 
​ // recur1: 
 
​ 93 80 f2 ff   // addi x1, x5, -1 
​ 13 01 03 00   // addi x2, x6, 0 
​ 93 01 04 00   // addi x3, x8, 0 
​ 13 82 03 00   // addi x4, x7, 0 
​ 6f f7 1f fc   // jal x14, hanoi 
 
​ 6f 00 40 03   // jal x0, output 

x0: 00000000 
x1: 0000000f 
x2: 00000001 
x3: 00000003 
x4: 00000002 
x9: 00000001 
x10: memory storing addr 
x14: stack pointer 
x15: bottom of the stack 
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​ // recur2: 
 
​ 93 80 f2 ff   // addi x1, x5, -1 
​ 13 01 04 00   // addi x2, x8, 0  
​ 93 81 03 00   // addi x3, x7, 0 
​ 13 02 03 00   // addi x4, x6, 0 
​ 6f f7 9f fa   // jal x14, hanoi 
     
​ // exithanoi: 
 
​ 03 a7 07 00   // lw x14, 0(x15) 
​ 83 a2 47 00   // lw x5, 4(x15) 
​ 03 a3 87 00   // lw x6, 8(x15) 
​ 83 a3 c7 00   // lw x7, 12(x15) 
​ 03 a4 07 01   // lw x8, 16(x15) 
 
​ 93 87 47 01   // addi x15, x15, 20   
 
​ // ret   
​ 67 00 07 00   // jalr x0, 0(x14) 
 
​ // output: 
 
​ 13 85 02 00   // addi x10, x5, 0 
​ 13 15 45 00   // slli x10, x10, 4 
​ 33 05 65 00   // add x10, x10, x6 
​ 13 15 45 00   // slli x10, x10, 4 
​ 33 05 75 00   // add x10, x10, x7 
​ 23 90 a5 00   // sh x10, 0(x11) 
​ 93 85 25 00   // addi x11, x11, 2 
 
​ e3 84 92 fc  // beq x5, x9, exithanoi 
​ 6f f0 1f fb  // jal x0, recur2​  

 
Here is the same code in Python, where n is the number of discs: 

def hanoi(n, source, target, auxiliary):​
​ if n > 0:​
    ​ # Move n-1 discs from source to auxiliary peg​
    ​ hanoi(n-1, source, auxiliary, target)​
    ​ # Move the nth disc from source to target peg​
    ​ print(f"Move disc {n} from {source} to {target}")​
    ​ # Move the n-1 discs from auxiliary peg to target peg​
    ​ hanoi(n-1, auxiliary, target, source)​
# Example usage:​
hanoi(3, 'A', 'C', 'B') 
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