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About this document 
This document summarizes some seemingly novel patterns that the author came up with after reading 

about dozens of known patterns. Only those discoveries that turned out to be potentially useful are 

included here (based on comparing their performance to other patterns of a similar difficulty, using 

250,000 randomly generated puzzles). Often, the new patterns turned out to be more powerful than the 

patterns that served as their inspiration, so it seems a waste to not share the discoveries. 

Due to the number of patterns that remained after vetting them, and without knowing if anyone would 

actually be interested in them, each pattern is only briefly described, typically by : 

1.​ a definition of the structure,  

2.​ a list of its main applications, and  

3.​ an example per application. 

If some patterns attract interest, more in-depth information, explanations, examples and rigorous (yet 

almost always short & simple) proofs can be provided. 

Target audience 
While several patterns of this document are quite simple, the majority is too advanced to be of (practical) 

interest to the average Sudoku player. If you have never heard of e.g. X-Wing, or find it hard to grasp its 

ideas, this document is not for you; most patterns here are considerable harder and all are described 

summarily. 

Instead, this document targets experienced players who are familiar with many (advanced) patterns and 

concepts such as bilocated digits, bivalued cells, multi-cells, Hidden/Naked Almost Locked Sets, etc. 

If you’re the owner of some website/app that explains/implements Sudoku (patterns) and want to 

incorporate some of the patterns described here to make them more accessible; go ahead - no 

permission or attribution is required. 

 

3 
 



Common terminology & notation 
ALS​ An Almost Locked Set, which can be naked (Naked ALS or just NALS) or hidden (Hidden ALS 

or just HALS). 

Naked ALS​ A set of cells that jointly have more candidate digits than cells. 

Hidden ALS​ A set of digits (of a house) that jointly have more candidate cells than digits (but e.g. 

Siamese twins takes a relaxed approach as to what a house is). 

AKLS​ Just an ALS, but specifically one where the difference between the number of cells and 

digits is K. An A0LS is simply a plain Locked Set (e.g. a Single/Pair/Triple/Quad/… is an A0LS).  

P{D}​ A set of cells (P) that jointly have D as distinct candidate digits. For example, r12c3{45} 

refers to the Naked Pair r12c3 with candidate digits 45. r12c3{45678} refers to a NA3LS (2 

cells with 3 more candidate digits). 

D{P} ​ A set of digits (D) (of some house) that jointly have P as distinct candidate digits. For 

example, 45{r12c3} refers to the Hidden Pair 45 (of column 3 and/or box 1) with candidate 

cells r12c3. 
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SK-Loop 
Foreword: SK-Loop is by no means a novel pattern. However, when the author stumbled upon it and its 

many dubious requirements and hand-wavy proofs (if any), there was no alternative but to prove it from 

scratch in order to understand it. In that process, novel patterns were discovered (although the level of 

novelty can be up to heated debates that seem to serve no real purpose and are of no interest to the 

author). Since someone expressed an interest in Newton’s Cradle (which has since been promoted to the 

next main chapter), an overview of SK-Loop is given as the author has internalized it. As such it’s an 

introduction to Newton’s Cradle, Domino Chain and (an optional aspect of) Nested Cycle. 

An SK-Loop is based on the intersection cells of 2 rows and 2 columns (yielding 4 "pivots"), subject to: 

●​ No 2 pivots may belong to the same box. 

●​ The intersection of an involved line and box without its pivot are jointly called a node; the iᵗʰ 

node is denoted Pᵢ (i = 1,…,8) and the nodes are ordered such that Pᵢ sees Pᵢ₊₁ 1. 
●​ Pᵢ has candidate digits Sᵢ₋₁+Sᵢ, where Sᵢ₋₁ and Sᵢ are disjunct sets of digits (+ denotes their union). 

“Officially", SK-Loop has the following additional requirements (but they are irrelevant to the applications2 

and the author sees no reason to strictly adhere to them): 

●​ The pivots must contain a clue. 

●​ The nodes may not contain a clue. 

●​ The nodes must contain at least 1 unsolved cell. 

●​ No Sᵢ may be empty or contain more than 3 digits (in some definitions, Sᵢ must even contain 

exactly 2 digits). 

 

2 Actually, several the requirements in bold (or parts thereof) are also irrelevant; see Newton’s Cradle for 
what’s really important. Spoiler: it’s the last bullet item in bold that is crucial. 

1 This is possible because the nodes can always form a loop, meaning that the indices wrap around at the ends, 
so P₈ sees P₁ (not P₉, which doesn't exist) and P₁ has candidates S₈+S₁ (not S₀+S₁). 
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Textually, this document notates3 an SK-Loop by listing the Pᵢ (in order), surrounded by Sᵢ₋₁ and Sᵢ between 

brackets: 

�S₈᚛ P₁ �S₁᚛ P₂ �S₂᚛ … �S₇᚛ P₈ �S₈᚛ 

Applications 
In the following applications, #S is the total size of all Sᵢ (i.e., their summed sizes) and #P is the total size of 

all Pᵢ (i.e., the total number of cells involved, since there’s no overlap): 

A1)​If #S = #P, every digit X of Sᵢ can be eliminated from every cell that sees every instance of X in Pᵢ 
and Pᵢ₊₁. 

Proof:​ every digit of Sᵢ can solve at most 1 cell of Pᵢ and Pᵢ₊₁, so all digits of all Sᵢ combined can 

solve at most #S cells. The application requires #S = #P, so all Sᵢ combined can solve at 

most #P cells. If a digit of Sᵢ wouldn't solve a cell of Pᵢ or Pᵢ₊₁, the digits of S could solve at 

most #P-1 cells, hence at least 1 cell (of some node) would have to be solved by a digit 

that doesn't occur in S. However, that's impossible as every cell only has candidates that 

occur in S. 

For any pivot p at the center of P� and P�₊₁: 

A2)​If #S = #P+1 and candidate digit X of p occurs in S�₋₁ and S�₊₁, then X can be eliminated from p. 

Proof:​ pivot p sees P�₋₁, P�, P�₊₁, and P�₊₂, so p=X would eliminate X from P�₋₁, P�, P�₊₁, and P�₊₂ 

and hence from S�₋₁, S� and S�₊₁ (of which 2 sets contain X). An SK-Loop (S',P) would 

remain in which #S' = #S-2 = #P-1 < #P, which is impossible (since there wouldn't be 

enough digits to solve every cell). 

A3)​If #S = #P+1 and the candidate digits of p are a subset of S�, then every digit of every Sᵢ can be 

eliminated from every cell r that sees Pᵢ and Pᵢ₊₁. For i=k, r must also see p. 

Proof:​ p=X for some X. This allows the removal of X from S�, which reduces #S by 1, resulting in 

an SK-Loop with #S = #P. A1 then proves that every digit of S'ᵢ can be eliminated from every 

cell r that sees Pᵢ and Pᵢ₊₁. X can be eliminated from every cell that sees p (and hence also 

P� and P�₊₁). 

Alt.:​ the proof is even easier using A4 of Newton’s Cradle: adding p to P� doesn't affect S� 

(hence #S stays the same), but it does increase #P by 1, resulting in a Newton's Cradle with 

#S = #P (and its A4 offers the same applications as A3 here). 

3 Perhaps some people are outraged by that notation as (apparently) convention dictates to use 
eureka-notation. The author isn’t a fan of that notation because of its re-use from the AIC domain. At the risk 
of upsetting even more people: AIC (the way it is promoted) is a blunder for several reasons, and, moreover, 
SK-Loops simply aren’t AICs (which is not the same as saying they can’t be represented as such with sufficient 
effort). 
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Examples 

A1 

​
500000002070004090003000800000960010000080000090701000002000500060100070800000003 

A2 

800016000007000000030000900000481006400002001000500000009000700050000030600020008 

A3 

​
000870003060000900000000020000081000300540000400700005009000060020000100800050007 
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Good vs. bad digits 
The applications barely cover #S > #P (pivots are usually already solved), and even if #S = #P no 

eliminations may be on offer. This and the following few sections aim to repair those shortcomings 

somewhat. 

Letting Xᵢᵤ stand for the digits of Sᵢ (i.e., Sᵢ = {Xᵢ₁, Xᵢ₂, …}): 

●​ A digit Xᵢᵤ is called "good" if it (eventually) solves (a cell of) Pᵢ or Pᵢ₊₁. 
●​ Otherwise, it's called "bad". 

This offers some more applications: 

A4)​Xᵢᵤ can be eliminated from every cell that sees Pᵢ and Pᵢ₊₁, provided that Xᵢᵤ is a good digit. 

Proof:​ Since Xᵢᵤ is good, X solves Pᵢ or Pᵢ₊₁. Hence X doesn't solve any cell that sees Pᵢ and Pᵢ₊₁. 

A5)​If p=X establishes an SK-Loop with #S < #P + K, where K is the number digits known to be bad, 

then p≠X. 

Proof:​ Every known bad digit Xᵢᵤ can be eliminated from Pᵢ and Pᵢ₊₁, and hence Sᵢ, resulting in a 

total decrease of #S by K. The resulting SK-Loop (S',P) satisfies #S' = #S-K < #P, which is 

impossible. 

Finding good digits one at a time 
To prove that a digit Xᵢᵤ is good, assume that it's bad and show this leads to a contradiction. 

That’s hard in general, but if #S = #P+1 it’s easy based on the fact that the assumption that Xᵢᵤ is bad 

implies that all other digits are good. 

Proof:​ If 2 bad digits Xᵢᵤ and Xⱼᵥ would exist, they could be eliminated from resp. PᵢPᵢ₊₁ and PⱼPⱼ₊₁, 

and hence from Sᵢ and Sⱼ. This reduces #S by 2, resulting in an SK-Loop for which #S = #P-1. 

That's impossible. 

That means that if Xᵢᵤ is assumed to be bad, all other digits can safely be assumed to be good, which 

offers a comfortable number of conjuncts (16) to find a contradiction (which is likely successful or at least 

possible since there are only 1 bad digit if #S = #P+1  – hence the assumption is probably false).  

Finding all bad digits (almost) at once 
A useful observation is that if #S = #P+N, then exactly N bad digits exist. 

Proof:​ The previous section showed that if #S = #P+1, exactly 1 bad digit Xᵢᵤ exists.  Ignoring Xᵢᵤ as 

a candidate of Pᵢ and Pᵢ₊₁ (and hence of Sᵢ) reduces the SK-Loop to satisfy #S = #P. Exactly 

the same reasoning shows that if #S = #P+N, an Xᵢᵤ exists that reduces the SK-Loop to 

satisfy #S = #P+N-1. By induction it follows that exactly N digits are bad. 

An obvious but quite naive way to prove that some Xᵢᵤ is a bad digit is to assume it isn't, and then show 

that assumption leads to a contradiction. For example, if p is some cell that sees Pᵢ and Pᵢ₊₁, then 

successfully building a chain p≠Xᵢᵤ → … → [contradiction] would prove that Xᵢᵤ is a bad digit. However, 
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that chain also proves p=Xᵢᵤ, which suggests that building it is probably hard (because otherwise p=Xᵢᵤ 

could probably be proved without taking advantage of the SK-Loop). 

To make it easy to prove a contradiction, more digits (and cells) need to be involved. The author’s favorite 

tactic is: 

1)​ Assume that all digits are good. 

2)​ Next, look for some obvious contradiction (e.g. an AᴷLS from which K+1 candidate digits are 

eliminated, or a Unique Rectangle that ends up with just 2 candidate digits, etc.). 

3)​ Finally, consider which parts of the assumption (step 1) were actually used (step 2); the contradiction 

can usually be attributed to some digits of just a few segments of the SK-Loop. 

This almost never identifies bad digits with pinpoint accuracy (just “this or these segments contain at 

least 1 bad digit”). However, that doesn’t matter: once enough (N) bad digits have been found, all others 

are known to be good (and A4 can be used). 

Example (1 segment + 1 ALS) 
​
#S = #P+1 in �67᚛ r23c1 �235᚛ r1c23 �1᚛ r1c78 �28᚛ r23c9 �457᚛ r78c9 �28᚛ r9c78 �46᚛ r9c23 �35᚛ r78c1 �67᚛: 

900704006008006900000019030000160200000400500400907001002000300080000050100070009 

The segment r23c9 �457᚛ r78c9 must contain a bad digit, otherwise the ALS r45c9{347} would have to be 

solved without candidate digits 47, which is impossible. It isn’t known exactly which digit (4, 5 or 7) of 

that segment is bad, but it’s enough to know that one is, and hence that all other segments contain good 

digits and can therefore be used for the usual eliminations. 
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Example (2 segments +  1 ALS) 
​
#S = #P+1 in �12᚛ r1c23 �67᚛ r1c78 �43᚛ r23c9 �57᚛ r78c9 �123᚛ r9c78 �79᚛ r9c23 �34᚛ r89c1 �69᚛ r23c1 �12᚛: 

 

900704006008006900000019030000160200000400500400907001002000300080000050100070009 

Since #S = #P+1, 1 digit is bad. It must be one of “r89c1 �69᚛ r23c1” or “r23c9 �57᚛ r78c9”, otherwise 

r5c13569 (5 cells) would be left with candidates 1234 (4 digits), which is impossible. The remaining (good) 

digits offer 12 eliminations (r1c5≠67, r1c6≠7, r2c7≠4, r3c8≠4, r7c7≠3, r8c7≠2, r9c5≠79, r9c6≠7, r8c2≠4, 

r7c3≠3), i.e. all the usual eliminations except r1c4≠69 and r4c9≠57 which might be invalid. 

Also, since only 1 bad digit exists, 1 of the 2 suspicious segments contains only good digits. That means 

that either r5c1456 or r5c456c9 forms a Locked Set for 1234, which offers 9 additional eliminations in row 

5 (r4c2≠14, r4c3≠23, r4c7≠234, r4c8≠13). The end-result consists of 20 eliminations: 

900704006008006900000019030000160200000400500400907001002000300080000050100070009 
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Example (2 segments +  2 ALSes)​
 

#S = #P+2 in �35᚛ r23c1 �12᚛ r1c23 �367᚛ r1c78 �12᚛ r23c9 �49᚛ r78c9 �13᚛ r9c78 �2456᚛ r9c23 �9᚛ r78c1 �35᚛: 

900000028100000504245008700709300006400090000601050000500080003304020870890703000 

#S = #P+2, but this can be reduced to #S = #P because 

●​ r9c78 �25…᚛ r9c23 has 1 bad digit (otherwise r9c9 would be stripped of its candidate digits). 

●​ r1c23 �367᚛ r1c78 or r9c78 �6…᚛ r9c23 has 1 bad digit (because if they were all good, 367 could 

be eliminated from the NA2LS r149c5{13467}, leaving just 2 digits for 3 cells in column 5). 

Note: the above SK-Loop violates many traditional requirements of SK-Loop, but since they don’t matter 

that’s fine. 

Finding bad digits using regularity 
Here, a regular SK-Loop means that #Sᵢ=#Pᵢ=2 for all i. Such an SK-Loop has the following properties: 

i)​ If Pᵢ=Sᵢ for some i, then Pᵢ=Sᵢ for all i. 

ii)​ If Pᵢ=Sᵢ₋₁ for some i, then Pᵢ=Sᵢ₋₁ for all i. 

Proof of claim i: since #Pᵢ=#Sᵢ and Sᵢ and Sᵢ₊₁ don't share digits, the following inference is valid for all i: 

Pᵢ{Sᵢ₋₁+Sᵢ}=Sᵢ → Pᵢ₊₁{Sᵢ+Sᵢ₊₁}=Sᵢ₊₁ 

Applying this inference 8 times in succession results in the following chain (using roll-over after index 8 

back to 1): 

Pᵢ=Sᵢ → Pᵢ₊₁=Sᵢ₊₁ → ...  → Pᵢ₊₈=Sᵢ₊₈. 

The property follows from the observation that this is a cycle, or more readily from the fact that if the 

initial proposition of a chain is true, then every proposition of the chain is true. 

Claim ii can be proved nearly identical, but based on the inference Pᵢ₊₁{Sᵢ+Sᵢ₊₁}=Sᵢ → Pᵢ{Sᵢ₋₁+Sᵢ}=Sᵢ₋₁. 
Alternatively, reversing the SK-Loop �S₈᚛ P₁ �S₁᚛ P₂ �S₂᚛ … �S₇᚛ P₈ �S₈᚛ to obtain �S₈᚛ P₈ �S₇᚛ … �S₂᚛ P₂ �S₁᚛ P₁ �S₈᚛ 

reduces claim ii to claim i. 
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As a result, every regular SK-Loop belongs to exactly 1 of the following categories: 

C1)​ Every Pᵢ is solved by at least 1 digit of Sᵢ₋₁ and at least 1 digit of Sᵢ. 

C2)​ Every Pᵢ is solved by the digits of Sᵢ. 

C3)​ Every Pᵢ is solved by the digits of Sᵢ₋₁. 

It's statistically most likely that a regular SK-Loop belongs to category C1. Therefore, assuming it belongs 

to e.g. category C2 (or C3) is likely wrong. To actually prove that it doesn't belong to C2 (or C3), it suffices 

to identify just 1 bad digit (as that would allow the existence of an impossible SK-Loop with #S = #P-1). 

Example (regularity + 1 ALS) 
#S=#P in �56᚛ r23c1 �12᚛ r1c23 �45᚛ r1c78 �39᚛ r23c9 �47᚛ r78c9 �12᚛ r9c78 �68᚛ r9c23 �39᚛ r78c1 �56᚛, but 

the usual SK-Loop applications have already been exhausted: 

800700006290000100003000020460300000000079000000450008002000300010000090700040005 

If this would be a category 2 SK-Loop, then r23c1 and r78c8 would both be solved by 12, but that’s 

impossible as it would leave r5c19{123} with just 1 candidate digit. Hence it’s not an category 2 SK-Loop, 

so, in particular, r1c23 and r23c1 can’t be solved by resp. 45 and 12.  
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Example (regularity + 3 ALSes)​
 

#S=#P in �12᚛ r23c1 �39᚛ r1c23 �18᚛ r1c78 �56᚛ r23c9 �48᚛ r78c9 �39᚛ r9c78 �24᚛ r9c23 �56᚛ r78c1 �12᚛, but 
the basic SK-Loop applications offer no eliminations: 

700400062006000090050000300400018000000200000000074001090000050073000600800100007 

If this would be a category 2 SK-Loop, the ALS r1c59{3569} (a NA2LS to be precise) would be reduced to 

the Naked Pair r1c59{39} and r5c19{3569} to the Naked Pair r5c19{56}. As a result, r5c5 (a NA3LS) would 

be unsolvable. 

 

13 
 



More regularity 
The kind of regularity described above occurs quite frequently, but there are other kinds. In general, if 

something looks regular but no eliminations are obvious, just invoke a bit of creativity to exploit the 

regularity and find some eliminations anyway. 

Example (4 ALSes + 7 chains)​
 

#S=#P in �789᚛ r1c23 �1᚛ r1c78 �568᚛ r23c9 �2᚛ r78c9 �789᚛ r9c78 �3᚛ r9c23 �569᚛ r89c1 �4᚛ r23c1 �789᚛, 
but the usual SK-Loop applications have already been exhausted: 

​
400200003005000090060000700000030001300106000000098000008000500070000060100040002 

What's striking is that each box has only 2 unsolved cells that don't belong to the SK-Loop, that those 2 

cells form an ALS, and moreover that in adjacent boxes those ALSes share a digit. It feels like such 

regularity should be exploitable. 

There are some intriguing Newton's Cradles (e.g. the very regular �24᚛ r2c2 �13᚛ r2c7 �24᚛ r8c7 �13᚛ r8c3 

�24᚛ r3c3 �13᚛ r3c8 �24᚛ r7c8 �13᚛ r7c2 �24᚛) but the author failed to find an easy way to make use of them. 

A hard way is to use those Newton's Cradles as inspiration to construct an Alien Fish using base sets 13r2, 

24c7, etc. with the 4 corner boxes as cover sets. However, the following chaining argument is more down 

to earth: 

It starts by noticing the following chain (after focusing on the nodes of the SK-Loop): 

C1)​ r1c23=1 → r1c78≠1 → r23c9=4 → r78c9≠4 → r9c78=3 → r9c23≠3 → r78c1=2 → r23c1≠2 → 

r1c23=1 

Proof:​ the odd inferences are trivial and every even inference is essentially identical: it's based 

on the fact that 4 cells within a box must be solved by 4 distinct digits. For example, if 

r1c78≠1, then r1c78 is limited to the 3 candidates 568. Since r23c9 has candidates 4568, 

(a cell of) r23c9 must be solved by digit 4, otherwise r1c78 and r23c9 (4 cells) combined 

would be limited to 568 (3 digits). 
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The regularity invites incorporating the ALSes in boxes 1379. Referring to the pairs of unsolved cells 

outside the SK-Loop in boxes 1, 3 and 9 and 7 as B₁, B₃, B₉ and B₇ (the 4 ALSes), and taking the previous 

chain into account, it’s almost unavoidable to notice that: 

C2a)​r1c23=1 → B₁=23 

C2b)​r23c9=4 → B₃=12 

C2c)​r9c78=3 → B₉=14 

C2d)​r78c1=2 → B₇=34 

Since C1 is a cycle, its propositions are either all true, or all false. If they're all true, then (using C2) B₁=23, 

B₃=12, B₉=14 and B₇=34. The following Contradiction Chains based on those locked sets proves that 

r1c23=1 (which implies B₁=23, hence r2c2=2 or r3c3=2) is an incorrect assumption: 

C3a)​r2c2=2 → r2c7=1 → r8c7=4 → r8c3=3 → r2c2=3  

C3b)​r3c3=2 → r3c8=1 → r7c8=4 → r7c2=3 → r3c3=3  

Hence every clause of C1 is false, which offers 16 eliminations: 

 

Note: the above example also illustrates why "chaining" shouldn't be labeled "guessing" (or even "hard"), 

at least not without knowing the context. In the example, 7 chains were built around 1 SK-Loop and 4 

ALSes to enable progress. Without knowing anything else, that seems ridiculously hard. However, here 

everything could be accomplished mentally since the SK-Loop (and regularity) guided every step, i.e. just 

about dictated which ALSes and which chains (including initial propositions and inferences) to consider. 

Having said that, there may be more pattern-like or smarter approaches that manage to find the same 

eliminations without having to improvise at all.  
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Newton's Cradle  
A Newton's Cradle is a sequence of non-overlapping multi-cells P₁, …, P� in which each Pᵢ sees its 

neighbor(s)4, has candidate digits Sᵢ₋₁+Sᵢ and S₀ = S�. It's notated as: 

�S₀᚛ P₁ �S₁᚛ … �Sᵢ₋₁᚛ Pᵢ �Sᵢ᚛ … �Sₙ₋₁᚛ Pₙ �Sₙ᚛ 

Applications 
A1)​If #S+#Sₙ = #P+1, then every digit X of Sₙ can be eliminated from every cell that sees all instances 

of X in P₁ and Pₙ. 

A2)​If a digit X occurs in K Sᵢ's and #S+#Sₙ < #P+K, then X can be eliminated from every cell that sees 

all instances of X in all Pᵢ's. 

A3)​If a digit X occurs in K Sᵢ's including Sₙ and #S+#Sₙ ≤ #P+K, then X can be eliminated from every 

cell that sees all instances of X in all Pᵢ's. 

Additional applications when Pₙ sees P₁ 
A4)​If Pₙ sees P₁ and #S = #P, then every digit X of Sᵢ can be eliminated from every cell that sees all 

instances of X in Pᵢ and Pᵢ₊₁5 (1 ≤ i ≤ n). 

A5)​If Pₙ sees P₁, #S = #P and n is even, then every digit X that belongs to every other Sᵢ (i.e. for i=1, 3, 

..., n-1, or for i=2, 4, ..., n) can be eliminated from every cell that sees all instances of X in Pᵢ and 

Pᵢ-₁ (1 ≤ i ≤ n). 

A6)​If Pₙ sees P₁, #S = #P+1 and some cell qᵤ{Sᵤ} sees Pᵤ and Pᵤ₊₁, then every digit X of Sᵢ can be 

eliminated from every cell r that sees all instances of X in Pᵢ and Pᵢ₊₁ (1 ≤ i ≤ n). For i=u, r must also 

see qᵤ. 

A7)​If Pₙ sees P₁, #S = #P+1 and some cell qᵤ{Sᵤ+Z} sees Pᵤ and Pᵤ₊₁ and qᵥ{Sᵥ+Z} sees Pᵥ and Pᵥ₊₁ and 

qᵤ sees qᵥ, then every digit X of Sᵢ can be eliminated from every cell r that sees all instances of X 

in Pᵢ and Pᵢ₊₁ (1 ≤ i ≤ n). For i=u (or i=v), r must also see qᵤ (or qᵥ). 

5 For i=n, Pᵢ₊₁ is defined as (a synonym for) P₁. 

4 P₁ and Pₙ have only 1 neighbor, whereas the other Pᵢ (1 < i < n) have 2 neighbors. 
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Examples 

A1 

​
000003000090500001780006025078300000900050083000048907000100600002005130010000002 

�2᚛ r56c4 �67᚛ r89c4 �489᚛ r79c6 �2᚛ 

Some alternative interpretations​
The Newton’s Cradle of the example above can also be expressed as an inference chain, for example 

(letting * stand for some variable digit that isn't relevant to know): 

r56c4≠2* → r56c4=67 → r89c4=48/49/89 → r79c6=29/24 → r79c6=2* 

It's possible to turn this into an alternating inference chain (making the chain needlessly longer), but it 

still wouldn’t be a (traditional) AIC because of the presence of disjunctive clauses (as in “r79c6=29/24”, 

which is just short for “r79c6=29 ∨ r79c6=24”). One way to get rid of them is to turn the chain into a 

so-called “net” (a chain that’s allowed to bifurcate to later merge the resulting sub-chains into a shared 

conclusion). Another way is to forcibly write it in the form of a “true” AIC, but that requires cheating by 

blatantly ignoring that it’s impossible for 2 cells to be solved by a different number of digits. Using (slightly 

modified) Eureka notation, it might look something like this: 

​ (2=67)r56c4 - (67=489)r89c4 – (489=24)r79c6 

Since many people expect AICs to be loopy, a final tweak can be to include r45c6 (to turn the AIC into a 

structure resembling a Discontinuous Alternating Nice Loop): 

(179=2) r45c6 - r(2=67)r56c4 - (67=489)r89c4 – (489=24)r79c6 – (24=179)r45c6 

By a flexible interpretation of the ordinary AIC rules, it follows that if 2 solves (a cell of) r45c6, then it 

doesn’t (hence 2 can be eliminated). Of course, this isn’t a proper AIC; the only reason that the conclusion 

is nevertheless valid, is because the total size of the “links” equals the total number of cells (+1 for the 

non-loopy version). Mind you, you have to count the total size of the right hand sides and not 

double-count the link that closes the loop. 
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Yet another approach is to make use of single-truth-set logic (a slightly more general version of “General 

Logic” that deals with relations between propositions directly rather than via the digits, cells and houses 

they are based on6); the following 3 “base” sets each contain exactly7 1 true proposition: 

●​ { r79c6=2*, r79c6=49 } 

●​ { r89c4=49, r89c4=67/68/78 } 

●​ { r45c4=67, r45c4=2* } 

Most of those individual propositions can be covered by 2 “cover” sets (which are also single-truth sets): 

●​ { r79c6=49, r89c4=49, … } (… represents the slack variable r79c6≠49 ∧ r89c4≠49, see footnotes) 

●​ { r89c4=67/68/78, r45c4=67, … } (idem: … = the conjunction of the negations of the 

propositions) 

Since every proposition is covered once, except r79c6=2* and r45c4=2* which aren’t covered8, (exactly) 

3-2=1 of the latter propositions must be true. Again, same eliminations. 

The author has yet to find clear definitions of creatures like Multi-Fishes, Alien Fishes, (Almost) MSLSes  

etc. but wouldn’t be surprised if the example could be expressed in some of those contexts as well (but 

since they use single cells and digits as building blocks it’ll probably be more tedious). 

Now consider the question what this example “really” is (and likewise all other examples): is it… 

-​ A Newton’s Cradle? 

-​ A chain (that uses disjunctive clauses)? 

-​ A nested chain? 

-​ An AIC (that uses invalid inferences, but gets away with that by imposing a constraint on the total 

link size)? 

-​ An instance of single-truth-set logic? 

-​ …? 

The answer: it’s all of them, and whichever term (or more importantly: way of conceptualizing) is used is a 

personal preference. The author finds the case analyses of the chain-approaches somewhat inelegant, 

considers using AICs with logically unsound inferences an intellectual dishonesty, and doesn’t like the 

set-approach as it’s non-constructive and too powerful to apply for something as simple as this; from a 

practical point of view, it's easier to build a Newton's Cradle, aiming to keep the difference #S-#P small 

during construction (without having to be aware of things like ALSes) and stopping when an application is 

hit upon. People who do basically the same thing but call the end-result an (ALS-)AIC are of course free to 

do so.  

8 Note that General Logic seems to abhor under-coverage (based on its better-than-usual, but still vague definition). Of 
course, it’s possible to add a base set (involving r45c6=2*) and 2 more cover sets (involving digit 2 of the box and column of 
r45c6) and then appeal to the effect of double coverage (of r45c6=2*), but that seems needlessly complex. 

7 Actually, a weaker condition suffices to hold everything together, namely that base sets should contain at least 1 true 
proposition, and cover sets at most one (as in GL). However, looking under the hood it’s doesn’t really matter, as e.g. slack 
variables can transform any inequality constraint (like ≥1 or ≤1) to into an equality constraint (=1). Using equalities from the 
start is marginally simpler (and if no slack variables and suchlike are needed then no information is lost). 

6 The advantage of this is that it gets rid of GL-limitations such as that truths/links can only concern single cells or digits. 
Also, it enables integrating non-trivial constraints such as those based on chains or uniqueness. Of course, this enters the 
realm of the abstract where geometry becomes less of a feature, so the extra flexibility is not something most Sudoku 
players will be comfortable with. 
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A3 

​
069708000000200003200500800034000005100070080000009040010680004506000008008007060 

�4᚛ r1c1 �3᚛ r3c23 �147᚛ r3c89 �69᚛ r2c7 �4᚛ 

A4 

400008009070001002206000000030009001902000073005800296000000024000300100008500037 

�6᚛ r4c1 �8᚛ r4c78 �45᚛ r4c3 �7᚛ r6c1 �1᚛ r9c1 �6᚛ 
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A4+A5 

 

000300006000008130936500000300020010040006003005900700008100247100000300093070001 

�2᚛ r9c4 �48᚛ r45c4 �7᚛ r4c6 �45᚛ r89c6 �2᚛ 

A6 

​
008106000090040002000000000600000258540708000800560740100090607004000003080003400 

�5᚛ r2c6 �7᚛ r2c1 �3᚛ r2c4 �8᚛ r78c4 �246᚛ r7c6 �5᚛ 

A7 

​
082093400700080000006100003300900001020000030000031500004800320200006057005009040 
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�6᚛ r9c9 �8᚛ r9c1 �16᚛ r1c1 �5᚛ r1c9 �6᚛ 

Varia 
●​ This pattern was inspired by SK-Loop, which is a special case of Newton's Cradle where n=8, Pₙ 

sees P₁, #Pᵢ=#Sᵢ=2 for i=1..n and several other, irrelevant constraints. Some of those constraints 

may make SK-Loops easier to spot, but the penalty is huge: it's rare for a puzzle to contain an 

SK-Loop (even when allowing for some minor relaxations). In contrast, Newton's Cradles are 

common. 

●​ The name of this pattern was inspired by A1, which is based on the fact that if X is does not solve 

P₁, it pops out at the other end as the solution of Pₙ and vice versa. 

●​ It's easy to extend the collection of applications, e.g. by involving ALSes to handle #S = #P+K for 

any K>0, or by considering special cases (such as a) Pᵢ=Sᵢ for all i, b) Pᵢ₊₁=Sᵢ for all i, c) otherwise. 

Introducing bad vs good digits is yet another approach. 
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Domino Chain 
A Domino Chain is a sequence of non-overlapping9 multi-cells10 P₁, …, P� (the "dominoes") in which 

each Pᵢ sees its neighbor(s), has candidate digits Sᵢ₋₁+Sᵢ 11 and S₀ = ∅ 12. It's notated as: 

�S₀᚛ P₁ �S₁᚛ … �Sᵢ₋₁᚛ Pᵢ �Sᵢ᚛ … �Sₙ₋₁᚛ Pₙ �Sₙ᚛ 

In the following, #Sᵢ and #Pᵢ denote the size of sets Sᵢ and Pᵢ. #S and #P denote the sums of those sizes 

over the range 1 ≤ i ≤ n. 

Applications 
A1)​ If #S = #P, then every digit X of Sᵢ can be eliminated from every cell that sees all instances of X in Pᵢ 

and Pᵢ₊₁ (1 ≤ i < n). 

A2)​ If a candidate digit Z of one or more Pᵢ is ignored such that as a result #S < #P, then Z can be 

eliminated from every cell that sees every ignored instance of Z. 

Examples 

A1 

 

001029300003060002209500040820000000045670289090208000604000508900040037700000000 

In �᚛ r5c6 �13᚛ r23c6 �47᚛ r12c4 �18᚛ r8c4 �᚛, #P=6 and #S=6, hence (A1) every digit of Sᵢ solves a cell of Pᵢ or 

Pᵢ₊₁. 

12 ∅ denotes the empty set. 

11 Sᵢ₋₁+Sᵢ denotes the union of 2 distinct sets of digits Sᵢ₋₁ and Sᵢ. 

10 A multi-cell is a set of cells that are solved by distinct digits, typically because they all see each other (i.e., 
share a house). 

9 The requirement that the Pᵢ don't overlap is stronger than necessary; all that's really matters is that #P (see 
later) counts the number of distinct cells. 
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A2 

 

079500260230067589006092073020700000000008042013000008000000010000640920042070000 

In �᚛ r9c9 �56᚛ r4c9 �1᚛ r1c9 �4᚛ r1c6 �3᚛ r8c6 �15᚛ r8c23 �8᚛, #P=7 and #S=8 (1 digit too many for A1). 

Ignoring candidate digit 5 in r49c9 and r8c236 results in �᚛ r9c9 �6᚛ r4c9 �1᚛ r1c9 �4᚛ r1c6 �3᚛ r8c6 �1᚛ r8c23 

�8᚛, resulting in #P=7 and #S=6. Hence (A2) 5 must solve a cell of r49c9 or r8c236. 

Varia 
●​ This pattern was inspired by Newton's Cradle. 
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Flying Fry 
A Flying Fry consists of: 

●​ 2 "base" rows (or columns)13, 

●​ 1 “source" cell, and 

●​ 1 "target" cell that belongs to a base line, 

such that, for every source digit X, the base cells for X see each other. 

Terminology 
●​ Source digits are the candidate digits of the source cell. 

●​ Base cells for X are the cells of the base lines that support X and aren't an escape or target cell. 

●​ Escape cells for X are the cells of the base lines that support X and see the source cell.  

In the following sketch, the potential base and escape cells for X are colored in resp. blue and red (they're 

potential because they depend on X, i.e. whether or not the cell supports some digit X). 

 

Note: pictures can be misleading, especially for patterns with multiple components. For example, the 

sketch above might be interpreted to imply that each (colored) cell is either a B/S/T/E-cell. However, the 

definitions are leading and they don’t impose such a dichotomy. In particular, a source cell is allowed to 

belong to a base line (in which case it's also either a base cell for X or the target cell). It's also possible for 

the (or a) target cell to be an escape cell as well.  

Applications 
Flying Fry has many applications. Fortunately, all of them follow almost immediately from the following 

key observation: 

The solution of the source cell is identical to the solution of the target cell. 

Since that property is crucial to every application, here’s a proof: 

The source cell is solved by some digit, say X. X can't solve a cell that sees the source cell. 

Consequently, in each of the 2 base lines X solves a cell that's either the target cell or a base cell 

13 2 parallel lines are suggested merely because the pattern is easiest to spot in that context. However, the 
types of houses are irrelevant for the logic of the applications; any 2 houses (e.g. a row and a box) would 
suffice. With some minor tweaks to some applications, those houses can even be allowed to overlap. In fact, at 
a fundamental level, a “house” only needs to represent some collection of propositions of which exactly 1 is 
true (so e.g. “1 cell + its candidate digits” can act as a “house”). 
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for X. The target cell can only provide 1 of those cells (because it belongs to just 1 base line14). The 

same is true for the base cells for X (because they see each other).Hence exactly 1 target cell and 1 

base cell are solved by X. 

With that that fact in mind, most if not all of the applications below will hopefully be obvious. Otherwise, 

they might seem like rabbits pulled out of a magician's hat -- so let the above sink in before continuing. 

A1)​ “Shared Digits”​
All candidate digits that aren't shared by the source and target cell can be eliminated from both 

cells. 

A4)​  “Finned Fish”​
If X is a source digit, then X can be eliminated from every cell that sees the source cell and all escape 

cells for X. 

A5)​  “Fish”​
If X is a source digit and all escape cells X share a house, then X can be eliminated from every cell 

outside that house that sees all base cells for X. 

A6)​ “Full translocation T ⇉ P”​
If every candidate digit of the target translocates from that target to the same cell p, other digits can 

be eliminated from p. 

A7)​ “Translocation T ↦ P”​
If source digit X translocates from the target to a cell p that sees the source cell, then X can be 

eliminated from the target. 

A8)​ “Translocation P ↦ T”​
If source digit X translocates from a cell p that sees the source cell to the target, then X can be 

eliminated from p. 

A10)​“Known digit”​
If X is a known digit15, then X can be eliminated from a) every cell that sees the source cell, b) every 

cell that sees the target cell and c) every cell that sees all base cells for X. 

A11)​“Unique Rectangle”​
If the source and target cell form 2 corners of a Unique Rectangle with p and q as the other 2 

corners, and a digit translocates from p to q, then that digit can be eliminated from p. 

A13)​“Double Flying Fry”​
Suppose a 2ⁿᵈ Flying Fry exists, such that the source or target cell of one Flying Fry sees the source or 

target cell of the other Flying Fry. If both source cells have the same 2 candidates XY, then X and Y 

can be eliminated from every cell that sees the source (or target) cells of both Flying Fry. 

15 A10 enables progress based on the knowledge that some digit X is already known to solve a source or target 
cell. In this pattern, the only realistic way this can be known if the source or target cell are already solved, but 
in generalizations (such as Exocet) some additional basic ways are available. 

14 If the target cell is a multi-cell (see later), some of its component cells might actually belong to different base 
lines. However, those component cells all see each other, so only 1 can be solved by X. To keep things simple, 
just assume that the source and target cells are single cells for now. 
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Note: the gaps in the application numbering are due to an alignment with another pattern known as 

Exocet (outside of the scope of this document) which uses 1 more source cell and 1 more base line. 

Multiple targets 
Using more than 1 target cell is desirable as that makes it easier to ensure that the base cells for X see 

each other (for every source digit X). However, if chosen arbitrarily, only a few applications would survive 

and moreover only in a much weakened form. For example, A1 would be reduced to "X can be eliminated 

from the source cells if no target cell supports X." Allowing multiple targets cells becomes much more 

useful if those cells aren't arbitrarily chosen but are candidate cells of a HALS16 for non-source digits. The 

reason is that, no matter how the candidate cells are solved, at most 1 can be solved by a source digit. In 

fact, if the candidate cells of that HALS are considered to be 1 multi-cell, hardly anything needs to be 

changed at all: 

●​ In the key observation, it should be understood that "the" target cell refers to the unique 

candidate cell that isn't solved by an internal digit of the HALS. 

●​ In A1, internal digits of the HALS are excepted: they can't be eliminated from the target 

(multi)cell. 

●​ A11 becomes non-applicable (unless you can find a UR for each possible combination).  

Multiple sources 
Within the scope of this pattern, using multiple source cells would be useless (because if the source 

multi-cell pq offers progress, then so do the source cells p and/or q individually). However, increasing the 

number of source cells does make sense if the number of base lines is increased accordingly (as in Exocet 

which deals with 1 more source cell and 1 more base line. 

Examples 

A1 

 

080910400000005000001000070093000007100390800048000000004870300000100700010006002 

Source cells: r1c1, target cells: r346c6, base lines: columns 26                  

16 Even a HALS is over-specific as a HAᴷLS (N digits of a house with N+K candidate cells) for any K>0 would do. 

26 
 



●​ A1 "Shared Digits": r3c6≠24, r4c6≠24 and r6c6≠2 because 24 aren't shared. 

A4 

 

030704056060200000000030290100000000006089000003020000008900024425871639000002580 

Source cells: r2c3, target cells: r9c2, base lines: rows 39 

●​ A4 "Finned Fish": r1c3≠1 because those cells all see [r29c3,r3c23]. 

●​ A4 "Finned Fish": r1c3≠9 and r4c3≠9 because those cells all see r29c3. 

A5 

 

000000000017000258000208004000300005050070410000004002800006020060000590200000846 

Source cells: r1c3, target cells: r8c5, base lines: rows 58 

●​ A5 "Fish": r4c6≠2 because 2 can be fully covered by column 6. 

●​ A5 "Fish":r6c4≠8 because 8 can be fully covered by column 4. 
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A6 

 

008032004000008102000000683002000400690000025001000700409000000005700040300410200 

Source cells: r2c5, target cells: r3c3, base lines: rows 13 

●​ A6 "Full Translocation T ⇉ P": r5c6≠13 because 47 translocate from r3c3 to r5c6 in row 5. 

Varia 
●​ This pattern was inspired by (Junior) Exocet (after which it's named), after realizing that 

seemingly important requirements of that pattern are mostly irrelevant for the logic behind its 

applications, especially the number of base lines. 

●​ Flying Fry simplifies Exocet by reducing the number of base lines from 3 to 2. That turned out not 

to be an over-simplification, as this pattern manages to out-perform Exocet by an order of 

magnitude. 
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Anti-Pointer 
An Anti-pointer consists of the cells of an intersecting box and line, excluding the intersection. 

The cells of this structure can be subdivided into 2 components, namely 1) the cells of the box outside the 

line and 2) the cells of the line outside the box. In the following sketch, the 2 components have been 

colored differently: 

 

Applications 
In the following applications, p is an arbitrary cell of one component and q is a cell of the other 

component: 

A1)​If q is the only cell of the other component that supports at least 1 candidate digit of p, then 

candidate digits not shared by p and q can be eliminated from p and q. 

 

A2)​If q is the only cell of the other component that supports at least 1 candidate digit of p, then 

candidate digits shared by p and q can be eliminated from every cell in the component of p 

except p itself. 

 

Note that p and q being single cells is irrelevant; all that matters for the applications is that they have the 

same size. 

In the following, more general versions of A1 and A2, P is an arbitrary subset of cells in one component 

and Q is the set of all cells of the other component that support at least 1 candidate digit of P. 

A1)​ If P contains exactly as many cells as Q, then candidate digits that are not shared by P and Q can be 

eliminated from P and Q. 
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A2)​ If P contains exactly as many cells as Q, then candidate digits shared by P and Q can be eliminated 

from every cell in the component of P except P itself. 

 

Notes: 

●​ While the running example above is of course highly contrived, it’s nevertheless impressive that 2 

simple applications manage to eliminate 30 digits from 12 cells without taking any other cells into 

account. 

●​ It's never needed to consider multi-cells (P and Q) larger than 3 cells. While that may be 

intuitively true, it’s not entirely trivial to prove (and strictly speaking not even completely true), 

so the appendix provides a proof (on page ). 
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Examples 

A1 

 

026008001100000008085010206000090030090000025500006109007300000800002503000040000 

The solution of r1c1 can only end up in r2c6, hence it must be solved by 4 or 7. 

A2 

 

700020009305800000010703000000000950000070406900400072030500000008001000600040200 

r1c3 and cell of r1c46 must form a Naked Pair for 46. 

Varia 
●​ Anti-pointer was inspired by Pointer (better known as Intersection Removal, Box-Line reduction 

or Pointing Pair/Triple); instead of focusing on the intersection of a box and a line, this pattern 

considers what can be done with the other cells of that box and line. The name was inspired by 

that complementary aspect (especially since Anti-pointer forces solutions into unseen cells 

whereas Pointer forces eliminations from seen cells). 
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●​ Anti-Pointer can be interpreted as a special case of SET, although the usual applications of SET are 

too coarse-grained to be useful for Anti-Pointer. The idea of Anti-pointer to take a subset of cells 

of one component, to next determine the cells of the other component that support the same 

candidate digits (as in A1/A2) can also be applied to SET; however, for SET that’s unpractical due 

to the combinatorial explosion of the number of sets P worth considering (as the number of 

houses increases or their overlap reduces).  
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XY-Flipbox 
An XY-Flipbox consists of 2 bivalued cells p₁ and p₂ with candidate digits XY, such that each cell sees a 

mini line of the same box which doesn't support X or Y outside those mini lines. 

 

Applications 
In the following, X and Y are the 2 candidate digits of p₁ and p₂ and w₁ and w₂ are the 2 mini lines that see 

resp. p₁ and p₂. 

A1)​X and Y can be eliminated from every cell that sees p₁ and p₂. 

 

A2)​X and Y can be eliminated from every cell that sees pᵢ and wᵢ (i=1,2). 
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Examples 

A1 or A2 

 

005000003400056000709000050600107008000069030000030000301600200806090004042070086 

In this example A1 and A2 offer exactly the same eliminations. 

A1 and A2 

 

004090000007000950359800640948712000500000709700000480075603090032000000091000004 

The eliminations from r1c9 follow from A1, the other eliminations from A2. 
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XY-Coloring 
XY-Coloring colors (some) bivalued cells using 2 colors (say, yellow and cyan) such that either all yellow 

or all cyan cells are solved by their smallest candidate17. 

Applications 
A1)​If a cell p sees 2 differently colored cells that both have Z as the smallest or largest candidate, 

then Z can be eliminated from p. 

A2)​If a cell p sees 2 cells of the same color, such that the smallest candidate Z of one is the largest 

candidate of the other, then Z can be eliminated from p. 

A3)​If a cell has 2 colors, the puzzle has no solution. This is of impossible in a proper puzzle, so any 

assumption that would result in a bicolored cell is known to be false. 

Coloring rules 
Coloring starts by identifying a Naked Pair pq{XY} (i.e. 2 cells p and q that combined have candidate digits 

X and Y). This allows coloring p and q respectively yellow and cyan. 

Next, more cells are colored. In the following, p and q are bivalued cells in which a shared candidate X is 

bilocated. Cell p is already colored, q isn't. 

Cell q is colored in the same color (as p) if: 

●​ X is the smallest candidate of p and the largest of q, or 

●​ X is the largest candidate of p and the smallest of q. 

Cell q is colored in the other color if: 

●​ X is the smallest candidate of both p and q, or 

●​ X is the largest candidate of both p and q. 

To summarize: the other color is used if X is the smallest or largest candidate digit of both cells, and 

otherwise the same color is used. 

17 Since only bivalued cells are considered, the coloring property of the definition is equivalent to the property 
that "either all cyan or all yellow cells are solved by their largest candidate". 
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Examples 

A1 

​
003010008980004105210780360108000000500890700000000830001657000000000600460028010 

Starting with [r1c1,r2c3]{67}, the resulting coloring allows (A1) the elimination of 7 from r6c23 (since 7 is 

the largest candidate digit of r6c1 and r6c5). 

A2 

 

000850000780100005000007003370009058648000029095008600027000506006000040900700001 

Starting with r1c19{24}, the resulting coloring allows (A2) the elimination of 2 from r23c3 and r6c1 (since 

2 is the smallest candidate digit of r1c1 and the largest of r4c3).  
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A3 

 

000850000780100005000007003370009058648000029095008600027000506006000040900700001 

Starting with r1c35{48} and the assumption that 5 doesn't solve r3c7, the resulting coloring produces a 

bicolored cell. Hence the assumption is false.  

Varia 
●​ This pattern was inspired by X-Coloring (aka Simple Coloring) and the result of trying to lift the 

relation between X-Chains and X-Coloring to XY-Chains and (some form of) XY-Coloring. 

●​ XY-Coloring is a peculiar pattern, as digit permutations can change the min/max relations 

between cells. At first glance, this suggests that XY-Coloring might break the rule/guideline that 

patterns should be invariant under digit permutations. However, that non-invariance is just an 

optical illusion, thanks to the beautiful symmetries between the coloring rules and applications. 

37 
 



Locked Set Coloring 
Locked Set Coloring is based on a Locked Set of size N with cells p₁ ⋯ p�. It colors cells using N colors C₁ 

⋯ C� such that if a cell doesn't have color Cₖ then it can't have the same solution as pₖ. 

Applications 
A1)​If cell p has a uniform color and supports only (some) locked digits, the locked digits it doesn't 

support can be eliminated from every cell that's also uniformly colored in the same color. 

A2)​If a cell p has no color but supports some locked digits, they can be eliminated from p. 

A3)​If in a house the joint set of candidate digits of cells with at least color C� doesn't contain Z, then 

Z can be removed from every cell that is the only cell in a house with color C�. 

Coloring rules 
Coloring starts by applying all colors to every cell that supports at least one locked digit, except the locked 

cells themselves: every locked cell p� is uniformly colored in C�. 

Next, colors are erased from cells. Any pattern can be used to eliminate colors. For example, if some cell p 

(initially only p�) is uniformly colored in C� and supports only (some) locked digits, C� can be erased from 

every cell that sees p. 

Examples 

A1+A2+A3 
Initial coloring based on r267c4{123}: 

​
000850000780100005000007003370009058648000029095008600027000506006000040900700001 

Next, colors are eliminated using any technique or pattern. For example, r2c4=yellow eliminates 

candidate yellow from r1c6, r2c1, r2c8 and r3c5 as they see r2c4. After several such elementary steps, all 

colored cells become monochrome (which is ideal but not necessary for A1/2/3) as follows: 
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​
079450806068097405054806079503964087780500964496078500640009058900780640800640091 

Varia 
●​ This pattern was inspired by Anti-Pointer which also tracks the solution of one or more cells. The 

choice to use a coloring technique was inspired by pencil marks, which keep track of which 

specific digits can solve a particular cell. Rather than being explicit about what those digits are 

(e.g. "the digit 1"), Locked Set Coloring refers to digits indirectly, namely as the solution of a 

particular cell (e.g. "the digit that solves r2c4, whatever it may be"). 
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Pointing Pair 
A Pointing Pair consists of 2 Pointers Wₓ and Wᵧ for digits X and Y, under the provision that cell p (the 

"pivot") is solved by neither X nor Y. 

 

 

Applications 
A1)​If Wₓ and Wᵧ see bivalued cell u{XY}, then all candidate digits except X and Y can be eliminated 

from p. 

 

A2)​If Wₓ sees bivalued cell u{XZ}, Wᵧ sees bivalued cell v{YZ} and u sees v, then all candidate digits 

except X and Y can be eliminated from p and Z can be eliminated from every cell that sees u and 

v. 
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Examples 

A1 

​
074100920309070000020409000002500060050080000700900100093700004000394006400020093 

A1 (tiny pointers) 

​
070040060503700008010005000030080004400900870008004200080096040600010389090408050 
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A2 

​
500304090360008040004006000070803050000010089850040000000201900000400012010007004 

Varia 
●​ This pattern was inspired by Pointer, based on the question what can be done with a structure 

that is almost a Pointer. 

●​ This pattern is surprisingly rich. For example, u in A1 can be allowed to support some more digits 

if they translocate to p (if so, every digit except the candidate digits of u can be eliminated from 

p). Another example is that A2 would remain nearly unchanged if a digit D is added to u and v, 

provided some cell with candidate digits DZ sees u, v and the pivot. Yet another example is based 

on the observation that u in A1 and u/v/uv in A2 as NALSes. Once realized, it's not hard to see 

that it’s possible to increase the size of the NALS(es) without invalidating the applications. It's 

even possible to replace u and/or v by HALSes.  
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Translocation 
A translocation is not a pattern but an inference of the form p=X → q=X (“if digit X solves cell p, then it 

also solves cell q”, i.e. X “translocates” from p to q). 

Translocations are vital to many patterns (but it doesn’t seem to be recognized elsewhere as much as it 

deserves), so it makes sense to make the concept explicit here. Some types of translocations are 

described below. 

Type 1 (1 bilocation) 
If p sees u and X is bilocated in u and q, then X translocates from p to q.  

 

Type 2 (1 bilocation + 1 bivalued cell) 
If p sees u and X is bilocated in u and q, then X translocates from p to q. 

 

Type 3 (1 translocation + 1 bilocation) 
If X translocates from p to u and only 1 cell q of some house doesn't see p or u but supports X, then X 

translocates from p to q. 

 

Note: if the sub-translocation is based on a bilocation (type 1) as in the sketch above, it's easy to spot. 

However, sub-translocations of types 2 or 3 are for some reason quite unintuitive (at least to the author). 
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More types 
●​ For every cell p and digit X, X translocates from p to p. This is of course a trivial type of 

translocation but it broadens the scope of some patterns (like Hidden SM-Wing) a bit without 

having consider “degenerate” cases. 

●​ If X translocates from p to q and from q to r, then X also translocates from p to r. 

●​ In general, any Inference Chain of the form p=X → … → q=X offers the translocation p=X → q=X. 
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Translocation Chain 
A Translocation Chain is an Inference Chain18 in which every inference is a translocation. 

 

Applications 
For any Translocation Chain p₁=X → p₂=X → … → pₙ=X: 

A1)​If every cell of some house that supports X sees a pᵢ, then X can be eliminated from p₁. 

A2)​If every cell of some house that supports X sees a pᵢ, and X translocates from pₙ to p₁, then X can 

be eliminated from every pᵢ. 

A3)​If X translocates from pₙ to p₁, then X can be eliminated from every cell that sees 1) some pᵢ and 

2) every cell in a house of some pⱼ except pⱼ itself that supports X. 

A4)​If pₙ sees some or all cells of p₁, then X can be eliminated from those cells. 

Note: A3 captures the same eliminations as those by a cycle in an (Alternating) Inference Chain. Since 

all inferences are based on equalities in a Translocation Chain, some extra work has to be done to 

extract the eliminations. 

18 An Inference Chain is just a sequence of inferences, such that at each step the premise is a sufficient 
condition for the consequent to be true. It has no irrelevant and frankly silly requirements such as that the 
inferences should alternate between “strong links” and “weak links” as in AIC. In fact, the author considers AIC 
to be one of the least (properly) understood, and worst explained Sudoku concepts, not in the least because of 
how its pictures use undirected links (sets of propositions of which exactly 1 is true), but it’s textual 
explanations invariably use a degenerate form (binary, directed inferences). 
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Examples 

A1 

​
500000002040001060003800100020907500000000000009603070007008900090500040600000008 

A2 

​
235006000001327506060000002000000000370002109100000050000473020023800090800200000 
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A3 

​
070048600680750000100000008000004002300500016000090040502000000410005007708010590 

A4 

​
000009080208007030000180507003090208700800090000026001000000800090050006005000040 

Varia 
●​ This pattern does not have a particular inspiration, it’s just an example of successful solving 

approach (“tracking a potential solution of a cell”) I’ve been using for as long as I can remember. 
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Siamese Twins 
Siamese Twins consist of 2 Hidden A⋆LSes19 (the "twins") for the same N digits that share a house (the 
"hip") for some of their candidate cells (the "internal cells"). The twins are allowed to share at most 1 
candidate cell. 

A few of the many configurations possible are shown below: 

 

             

 

Terminology 
For each twin (a HA⋆LS of size N): 

●​ The internal digits are the N digits of the Hidden A⋆LS. 

●​ The external digits are the candidate digits of the candidate cells that are not internal. 

●​ The internal cells are the candidate cells of the Hidden A⋆LS that belong to the hip. 

●​ The external cells are the candidate cells of the Hidden A⋆LS that do not belong to the hip. 

The internal/external digits/cells of Siamese Twins are the internal/external digits/cells of the twins 

combined. 

19 An Hidden A⋆LS (of size N) is a Hidden AᴷLS (N digits of a house with N+K candidate cells) for some arbitrary 
K≥0. In the sketches, K=1 is used. 
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Applications 
A1)​Internal digit X can be eliminated from every cell that sees every instance of X in the external or 

shared cells. 

A2)​If the number of external cells + the number of shared internal cells is at most N, all internal 

digits can be eliminated from every cell of the hip that does not belong to a twin. 

A3)​If the number of external cells + the number of shared internal cells is N+K, the external or 

shared cells form a Hidden AᴷLS for the internal digits. 

A3 doesn't explicitly describe eliminations but rather a useful fact to potentially deduce eliminations20. 

However, it takes only a small step to specialize A3 into more concrete applications, for example: 

A3a)​If K=0, every external digit can be eliminated from every external or shared cell. 

 

         

 

The following application is also based on A3 for K=0, but it employs 2 Siamese Twins: 

A3b)​If 2 Siamese Twins reveal (via A3) the Hidden ALSes XY{pqr} and UV{pqs} (where pqrs are 4 

distinct cells and XYUV are 4 distinct digits), r can be restricted to XY, s to UV and p and q to 

XYUV, i.e. other candidate digits can be eliminated. 

20 It’s like the difference between “p or q are solved by Z” and “Z can be eliminated from every cell that sees p 
and q”, only less trivial. 
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If K=1 in A3, the external cells + the shared cell (N+1 in total) form a Hidden ALS for N internal digits. 

Hence at most 1 candidate cell of that Hidden ALS (i.e., the external cells plus the shared internal cell) can 

be solved by an external digit. 

A3c)​If K=1 and an external digit translocates from one candidate cell to another, that digit can be 

eliminated from the former candidate cell. 

A3d)​If K=1 and p=X causes the elimination of all internal digits from 2 distinct candidate cells, X can 

be eliminated from p. 

Examples 

hip=box, N=1 

 

706030200300050700080600000200090500000000010004000000000020075000509300500003020 

The Hidden ALS 5{r6c26} and the Hidden ALS 5{r35c3} are conjoined by box 4, revealing the Hidden ALS 

5{r3c3,r6c6}. Hence r6c6≠2, based on A3c (using r6c6=2 → r3c3=2). 

Hip=box, N=2 
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050820001100706000800013700008000003320000100004370200601080400405000019200100050 

The Hidden ALS 12{r4c246} and the Hidden ALS 12{r468c6} are conjoined by box 5, revealing the Hidden 

ALS 12{r4c26,r8c6}. Hence r4c2≠7, based on A3c (using r4c2=7 → r8c6=7). 

Hip=column, N=2 

 

050008290900540000008200004005000901090600000800005340200000100030070000009002430 

The Hidden ALS 34{r1c13,r2c3} and the Hidden ALS 34{r4c12,r5c1} are conjoined by column 1, revealing 

the Hidden ALS 34{r12c3,r4c2}. Hence r4c2≠2 and r2c3≠2, based on A3c (using r4c2=2 → r2c3=2 and 

r2c3=2 → r4c2=2). 

Hip=box, N=3 ("Triple Firework") 

 

000206040000004607400301905200000004901400060043000890070800400100040000094060200 

The Hidden ALS 123{r2c1238} and the Hidden ALS 123{r1238c2} are conjoined by box 1, revealing the 

Hidden LS 123{r2c28,r8c2}. Hence r2c8≠8 and r8c2≠568, based on A3a. The eliminations from r1c1 and 

r3c3 follow from A2. 
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Hip=row, N=3 

 

005600004400005300006040100100957003500060001007000090000200800600030002020500000 

The Hidden ALS 123{r1c12,r2c23} and the Hidden ALS 123{r1c56,r3c46} are conjoined by row 1, revealing 

the Hidden ALS 123{r2c23,r3c46}. Hence r2c2≠7, based on A3c (using r2c2=7 → r3c4=7). 

Varia 
●​ Siamese Twins was inspired by Triple Firework. 
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Naked SM-Wing 
A Naked SM-Wing consists of 2 translocations for 2 different digits from 2 pivots to the same wing. 

Applications 
In the following applications, the 2 translocations are p₁=X₁ → w=X₁ and p₂=X₂ → w=X₂ (X₁≠X₂). 

A1)​If p₂ supports only candidate digits X₁ and X₂ and sees p₁, then X₁ can be eliminated from p₁. 

A2)​If X₂ is bilocated in p₁ and p₂, then X₁ can be eliminated from p₁. 

Note that the above applications are specific instances of a more abstract application: 

A1)​If p₁=X₁ → p₂=X₂, then X₁ can be eliminated from p₁. 

Also note that in A0 (and A1), p₁ and p₂ can be multi-cells. However, for A2 it makes no sense to consider 

multi-cells p₂ (since p₂ only supports X₁ and X₂ it would have to form a Naked Pair, which would trivially 

eliminate X₁ from p₁). 

Examples 

A1 

​
600300040000684002004051900050036000130500070009010000000000000200000804080100005 

Varia 
●​ Naked SM-Wing was inspired by M-Ring which can be considered to be a special case of Naked 

SM-Wing (where p₁=p₂ and the 2 translocations are equivalences). Also, if the translocations are 

of type 1 only, applications A1 and A2 correspond to resp. M-Wing and S-Wing. 
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Hidden SM-Wing 
A Hidden SM-Wing consists of 2 translocations for the same digit from 2 pivots to 2 wings that see each 

other. 

Applications 
In the following application, the 2 translocations are p₁=X → w₁=X and p₂=X → w₂=X (p₁≠p₂). 

A2)​If X translocates from p₁ to p₂, then X can be eliminated from p₁. 

Examples 

A1 

​
630715000125894300090263015001008020000379050050000700010006030003007500500430008 

Varia 
●​ Hidden SM-Wing was inspired by Naked SM-Wing. 
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Half Naked ALS Pair 
A Half Naked ALS Pair consists of a HALS (Hidden ALS) and a NALS (Naked ALS) that interact via a SECP. 

In the pattern known as ALS Pair, an RCC (Restricted Common Candidate) enables 2 NALSes to directly 

interact with each other. For the interaction between a HALS and a NALS, a similar concept is introduced: 

A "Common Pair" (CP) is defined as a pair (p,X) such that: 

●​ p is a candidate cell of the HALS that supports X, and 

●​ X is a candidate digit of the NALS and of p. 

An "entangled" CP (ECP) satisfies: 

●​ Every cell of the NALS that supports X sees p. 

A "smallest" CP (SCP) satisfies: 

●​ The only internal digit supported by p is X. 

A CP that is both entangled as well as smallest is abbreviated SECP. 

Applications 
A1)​If (p,X) is a SECP and (q,Z) an ECP where Z is an external digit of the HALS, then Z can be 

eliminated from q. 

 

A2)​If (p,X) is a SECP and (q,Z) an SCP, then Z can be eliminated from every cell that sees q and every 

instance of Z in the NALS. 

 

A3)​If (p,X) is a SECP, (q,Y) an SCP and q sees K cells of the NALS that combined have K+1 candidate 

digits {Y,Z,…}, then Z can be eliminated from every cell r that sees every instance of Z in the K 

cells. 

55 
 



 

A4)​If (pq,XY) is a SECP, then all external digits can be removed from every candidate cell of the HALS 

except p and q. 

 

A5)​If (pq,XY) is a SECP, then for every candidate digit Z of the NALS, Z can be eliminated from every 

cell r that sees every instance of Z in the NALS. For Z=X and Z=Y, r should see p and q as well. 

 

Examples 

A1 

​
700090006030040000094007050007400080000005200010008600020700000008050090300000001 
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A2 

​
000010000801060035600004108400020800107600900020300010015076000760009001000000070 

A3 (K=1) 

​
000095020970400500010000000307040800001700000006003040700004900009080076020900030 
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A3 (K=2) 

​
009081000000900341100000000090020000010800796007019005600008000070002504030104000 

A4 + A5 

​
060020905900100007300000001090000020004000560000800000800000003700004000000050090 

Varia 
●​ Half Naked ALS Pair was inspired by (Naked) ALS Pair which uses 2 NALSes. Half Naked ALS Pair 

improves upon the performance of ALS Pair by about 70% (in terms of occurrences in puzzles and 

average number of eliminations). Obviously, a variant that uses 2 HALSes was also considered. 

However, the performance of that “Hidden ALS Pair” pattern turned out to be abysmal. 
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Puppet Master 
A Puppet Master consists of a cell (the “pivot”) with candidate digits XY⋯, such that X and Y are 

bilocated in the pivot and 2 cells (the “wings”, one for X and one for Y) that are able to eliminate X or Y 

from the same NALS (the “target”). 

 

Applications 
A1)​Every candidate except X and Y can be eliminated from the pivot. 

 

A2)​Every candidate Z of the target except X and Y can be eliminated from every cell sees every 

instance of Z in the target. 

 

A3)​X (or Y) can be eliminated from every that cell sees the target and the wing for X (or Y). 
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Examples 

 

040800050000030706900000480000003004304958001200740000430000007108060000090005040 

Candidates 19 are bilocated in the pivot r2c8 and the wings r2c6 and r7c8=1, which locks the target Naked 

ALS r7c46{129} (since r2c6=9 or r7c8=1). 

 

501008007007000080060047000050703001000000000300506090090000500000060040400100903 

Candidates 37 are bilocated in the pivot r7c5 and the wings r9c5 and r1c5=3, which locks the target Naked 

ALS r149c8{2367} (since r9c5=7 or r1c5=3). 
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000060003038007000012000500000000009000702000300000064005000810003000000900040000 

Candidates 46 are bilocated in the pivot r5c3 and the wings r9c3 and r1c3=4, which locks the target Naked 

ALS r14569c7{123467} (since r9c3=6 or r1c3=4). 

Varia 
●​ Puppet Master was inspired by XY-Wing (instead of instead of considering the cases P=X and P=Y, 

it was considered how the cases P≠X and P≠Y could be exploited). 
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Near-death Blossom 
A Near-death Blossom consists of a cell (the "pivot") of which each candidate digit X except Z is 

associated with a Naked ALS (the "wing" for X) such that 1) X and Z are candidate digits of the wing, 

and 2) the pivot sees every instance of X in the wing. 

Applications 
A1)​Z can be eliminated from every cell that sees every instance of Z in the Near-death Blossom. 

Examples 

A1 

 

001060200070430000904050060080007009705004006000300000100073005003000070007240300 

r6c9≠2 locks Naked ALSes r3c29{237} or [r4c3,r6c1]{246}. Regardless of which ALS (if any) gets locked, 

r6c2≠2. 

A1 (with overlapping wings) 

 

084000700519807030007000081000270006700406000900038000890000500070005018053080200 

r4c8≠5 locks Naked ALSes [r4c6,r6c4]{159} or r6c47{145}. Regardless of which ALS (if any) gets locked, 

r6c8≠5 and r6c9≠5. 
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Varia 
●​ Near-death Blossom was inspired by Death Blossom. 
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ALS-PQ Wing 
An ALS-PQ Wing consists of a Hidden ALS (the "pivot") with 2 candidate cells p₁ and p₂ that support 

only 1 internal digit (X₁ and X₂) and have a wing. That wing is a Naked ALS in which every instance of Xᵢ 
(at least 1) sees pᵢ. 

 

Applications 
A1)​If Z is a shared candidate digit of both wings other than X₁ and X₂, Z can be eliminated from every 

cell that sees every instance of Z in both wings. 
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Examples 

A1 

 

005010200000000500193002087052900004010205000000041052080004000500608000060103090 

The Hidden ALS 8{r1c14} supports only 1 internal digit in r1c1{8…} and r1c4{8…}, which locks at least 1 

wing as follows: [r4c1,r6c2]{378} = 37 or r6c24{378} = 37.  Hence r6c1≠37 and r6c3≠7. 

Varia 
●​ ALS-PQ Wing was inspired by ALS-XY Wing (simply by letting the pivot be a HALS instead of 

NALS). 

●​ It’s of course possible to use other types of wings; all that's relevant is that the wing for pᵢ is 

affected by pᵢ=Xᵢ (in this pattern, the wing is a NALS that turns into a Locked Set). 
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Digit Comb 
A Digit Comb consists of a digit X with candidate cells p₁, …, pN such that each pᵢ has a wing wᵢ. All 

individual wings wᵢ should offer the same elimination under the assumption that pᵢ=X is true. 

Various types of wings can be used: 

●​ A Naked ALS wᵢ with candidate digit X, such that every instance of X sees pᵢ. 
●​ A Hidden ALS wᵢ with a candidate cell q that only supports X as an internal digit and sees pᵢ. 
●​ A Hidden ALS wᵢ with external digit X and pᵢ as a candidate cell. 

●​ A cell wᵢ that is pᵢ itself. 

●​ A cell wᵢ such that X translocates from pᵢ to wᵢ. 
●​ A cell wᵢ such that a digit Y other than X translocates from wᵢ to pᵢ. 

Of course, any Inference Chain of the form pᵢ=X → … → q≠Z can serve as a wing for pᵢ (and the pattern 

would be known as Digit Forcing Chain). However, building a  chain for every pᵢ without constraints is 

costly. The interesting aspect of ALS Comb is that relying on just a few simple, almost “predefined” 

structures turned out to offer a surprisingly good performance (compared to single-celled digit forcing 

chains of unrestricted lengths). 

Applications 
A1)​Every shared elimination is valid. 

Examples 

2 NALSes 

 

400208063000047000800600007050000038000002079900800600040000000001020006700300090 

5{r236c8} locks 1 of the following ALSes: r2c9{15} or r5c7{15} 
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2 NALSes + 1 HALS. 

 

010300905925001000370059002709000400040075009082090700200000091000906000490000080 

8{r3c347} locks 1 of the following ALSes: r15c1{168}, r5c14{168} or 1{r35c7}. 

2 HALSes 

 

050060010100002000600000402006100070805070000070605000503000900400900003080050060 

7{r19c1} locks 1 of the following ALSes: 9{r9c13} or 2{r1c13} 
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HALS + cell 

 

080901000000620500900000070000400002802060000460000300030704000000000107507080000 

57{r1c135} locks at least 1 wing as follows: 2{r1c1,r3c2}=r3c2 or r1c3=5 

Note that this example uses 2 digits for the pivot and therefore is not an instance of Digit Comb but rather 

some other, unknown pattern (that author hasn’t bothered to define). The reason that the same ideas of 

Digit Comb can be used is that it’s impossible for r1c1≠7 and r1c3≠5 to be both true (because r1c1 and 

r1c3 support only 1 digit of the HALS 57{r1c135}), hence r1c1=7 ∨ r1c3=5 is a verity. 
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Nested Cycle 
Nested Cycle uses Inference Chains to derive progress from sets of cycles. 

If P₁ ↔ … ↔ PN is a cycle then exactly 1 of the following falsity chains is valid and hence can be built 

(ignoring the effort this may require): 

●​ P₁ & … & PN → … → false 

●​ ¬P₁ & … & ¬PN → … → false 

If successful, the resulting progress consists of N eliminations and solutions in total (for a simple cycle). 

To minimize the difficulty of arriving at a falsity and to maximize progress, N shouldn't be tiny: a cycle with 

N<4 is almost always (too) hard, N=8 is good, N>16 is great. If no large enough cycle is available, it's 

possible to combine multiple cycles to achieve the same effect as 1 large cycle. 

Combining cycles 
Inference Chains are a powerful tool to combine cycles. Since chains are all about propositions, to apply 

them to cycles they must first be translated to propositions (via ⟪·⟫): 

For any cycle C, ⟪C⟫ is the proposition that "every proposition of C is true". 

More formally, ⟪P₁ ↔ … ↔ Pₙ⟫ = P₁ & … & Pₙ. The reason this pattern/technique uses cycles is that their 

propositions are either all true, or all false, i.e. either ⟪C⟫ or ⟪¬C⟫, which gives the useful identity ⟪¬C⟫ = 

¬⟪C⟫. 

Cycles can be combined by using just 2 (meta) inferences: 

Inference 1: “Inflation” 

If ⟪¬P⟫ ∧ … ∧ ⟪¬Q⟫ → … → false, ​
then ⟪P⟫ ∨ … ∨ ⟪Q⟫ 

Inference 2: “Deflation” 

If ⟪P⟫ ∨ … ∨ ⟪Q⟫ ∨ ⟪Z⟫ ​
and ⟪P⟫ ∨ … ∨ ⟪Q⟫ ∨ ⟪¬Z⟫,​
then ⟪P⟫ ∨ … ∨ ⟪Q⟫ 

Inflation provides a conceptually easy way to construct sets of cycles P, …, Q such that ⟪P⟫ ∨ … ∨ ⟪Q⟫ is 

true. Deflation reduces pairs of those sets to smaller sets, until --ideally-- a set consisting of just 1 cycle P 

(for which ⟪P⟫ is true) is discovered.  

A minor simplification 
Before inflating cycles, it's convenient to merge any overlapping cycles (just to reduce the number of cycle 

combinations to consider during inflation): 

●​ If cycles P and Q share a proposition, then ⟪P⟫ = ⟪Q⟫ = ⟪P ↔ Q⟫. 

●​ If cycle P contains some proposition X and cycle Q contains proposition ¬X, then ⟪P⟫ = ¬⟪Q⟫ = ⟪P 

↔ ¬Q⟫. 
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In both cases, P and Q can be abandoned and replaced by a larger cycle (either P ↔ Q or P ↔ ¬Q). 

Seeding cycles 
Nested Cycles can be based on any set of “seeding” cycles, but preferably the total number of 

propositions (of all cycles combined) is large compared to the total number of cycles. 

Just picking elementary propositions (like p=X) and plugging them in as cycles of length 1 is very generic, 

but it offers an impractical size ~ amount ratio. Using bilocated digits and/or bivalued cells is a bit better, 

but still hard for human solvers. 

As a rule of thumb, cycles with less than 4 (distinct) propositions aren't worth the effort it takes to deal 

with them. If there are numerous cycles of length 4+, it's hard to know where to begin (and investigating 

all combinations would be a time-consuming task). Fortunately, by the time Nested Cycle becomes worth 

considering, puzzles tend to have few simple yet interesting cycles left (about 3-4 cycles, and almost never 

more than 8). 

Seeding cycles based on SK-Loop 
Nested Cycle doesn't address the problem of finding seeding cycles; its focus is on how to extract progress 

from them after they've been found. As a curiosity, there happens to be a pattern that yields interesting 

cycles (almost) instantly. 

A category I SK-Loop �S₈᚛ P₁ �S₁᚛ P₂ �S₂᚛ … �S₇᚛ P₈ �S₈᚛ has the properties that #Sᵢ=#Pᵢ=2 and that every Pᵢ is 

solved by 1 digit of Sᵢ₋₁ and 1 digit of Sᵢ. 

Equivalently, 1 digit of Sᵢ is solved by a cell of Pᵢ, and the other digit is solved by a cell of Pᵢ₊₁. Naming the 2 

digits of Sᵢ Xᵢ and Yᵢ, this property corresponds to the following multi-celled cycles: 

Pᵢ=Xᵢ ↔ Pᵢ≠Yᵢ ↔ Pᵢ₊₁=Yᵢ ↔ Pᵢ₊₁≠Xᵢ 

Naming the 2 cells of Pᵢ qᵢ and rᵢ, and considering only those i for which Xᵢ and Yᵢ are bilocated in resp. 

qᵢqᵢ₊₁ and rᵢrᵢ₊₁ (which is very common for the pivotal boxes of the SK-Loop), the following single-celled 

cycles are available: 

qᵢ=Xᵢ ↔ qᵢ₊₁≠Xᵢ ↔ rᵢ₊₁=Yᵢ ↔ rᵢ≠Yᵢ 

This means that if an SK-Loop is present and determined to belong to category I21, it can be used to 

provide up to 4 cycles of length 4 as input to Nested Cycle. 

21 It suffices to build 2 falsity chains that start with plentiful (16) conjuncts, with the aim of proving 1) Pᵢ ≠ Sᵢ and 
2) Pᵢ ≠ Sᵢ₊₁. 
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Examples 

1 cycle, seeded by SK-Loop 

 

800010007060000050075000900200104000000020000000807004098000360003000000700080001 

This puzzle contains the SK-Loop: 

�14᚛ r23c1 �39᚛ r1c23 �24᚛ r1c78 �36᚛ r23c9 �28᚛ r78c9 �59᚛ r9c78 �24᚛ r9c23 �56᚛ r78c1 �14᚛ 

It can’t the true that Pᵢ=Sᵢ for all i, otherwise r2c1=9 ∧ r8c9=9, hence r5c19≠9 ∧ r28c5≠9, hence r5c46=9 ∧ 
r46c5=9 (which is impossible). Similarly, it can’t the true that Pᵢ=Sᵢ₊₁ for all i (as that results in the 

contradiction r5c46=6 ∧ r46c5=6). Hence some Pᵢ is solved by a digit of Sᵢ and of Sᵢ₊₁. It’s easy to prove that 

this must then be true not just for any but for every i (see the analysis of SK-Loop). 

Hence this SK-Loop is a category 1 SK-Loop that offers 4 cycles, 1 of which is: 

r3c1=3 ↔ r1c2≠3 ↔ r1c3=9 ↔ r2c1≠9 

This cycle (or rather set of 1 cycle) is trivial to inflate: every proposition must be true, otherwise they'd all 

be false, hence r3c1≠3 ∧ r1c3≠9, hence r3c1=1 ∧ r1c3=2, hence r2c3≠12 (which is impossible). 
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2 cycles 

 

060070020000000701074085396051907000047010900000043007735401680400030000012058400 

This puzzle contains a few simple cycles, 2 of which are: 

●​ r1c6≠4 ↔ r2c6=4 ↔ r2c8≠4 ↔ r4c8=4 ↔ r4c9≠4 ↔ r1c9=4 

●​ r1c3≠3 ↔ r2c3=3 ↔ r2c4≠3 ↔ r1c4=3 

The number of propositions available (10) makes it easy to inflate those cycles: 

●​ ⟪r1c6=4 ↔ r2c6≠4 ↔ r2c8=4 ↔ r4c8≠4 ↔ r4c9=4 ↔ r1c9≠4⟫ ∨ ¬⟪r1c3≠3 ↔ r2c3=3 ↔ r2c4≠3 

↔ r1c4=3⟫​
Proof: suppose that's false; then r1c6≠4 ∧ r1c3≠3, hence r1c6=9 ∧ r1c3=9, which is impossible. 

●​ ⟪r1c6=4 ↔ r2c6≠4 ↔ r2c8=4 ↔ r4c8≠4 ↔ r4c9=4 ↔ r1c9≠4⟫ ∨ ⟪r1c3≠3 ↔ r2c3=3 ↔ r2c4≠3 ↔ 

r1c4=3⟫​
Proof: suppose that’s false; then r2c6=4 ∧ r4c8=4 ∧ r2c4=3 (eliminating candidate cells of digit 6 

in column 5 and row 4), hence r2c5=6 ∧ r4c5=6, which is impossible. 

Deflation is even simpler and results in: 

●​ ⟪r1c6=4 ↔ r2c6≠4 ↔ r2c8=4 ↔ r4c8≠4 ↔ r4c9=4 ↔ r1c9≠4⟫ 
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Appendix (some deferred proofs) 

Anti-Pointer 

It’s never needed to consider sets P larger than 3 cells in Anti-pointer. 
 

The applications only deal with Anti-Pointers for which P and Q have the same size and no other cell in 

the component of Q supports a candidate digit of P. For the sake of brevity, let's denote those 

Anti-Pointers P ↣ Q, the "other cells in the component of P and Q" P' and Q', and "the candidate digits of 

some set of cells S" C(S). 

Now consider P ↣ Q, where P and Q consists of N cells. P' and Q' both consist of 6-N cells, so also have 

equal size. Furthermore, Q' supports no digits of C(P), hence P' contains the only cells of its component 

that support C(Q'). In other words, if P ↣ Q is valid then so is Q' ↣ P'. P and Q' can't both consist of more 

than 3 cells (otherwise 6 = #P+#P' = #P+#Q' > 6), so the smallest of them uses at most 3 cells. 

That takes care of the boring bit. The interesting bit left to prove is that if P ↣ Q offers an elimination, 

then so does Q' ↣ P' (and vice versa, but that trivially follows on account of symmetry). 

Case 1: suppose A2 in P ↣ Q eliminates x from p', for some p' in P' and x in C(P). Then x is a digit of C(P') 

(because x can be eliminated from p'). Also, x is not a digit in C(Q') (because Q contains every cell of its 

component that supports x). Hence A1 in Q' ↣ P' also establishes p'≠x 

Case 2: suppose A1 in P ↣ Q eliminates y from q, for some q in Q and y in C(Q) but not C(P). It's safe to 

assume that y is in C(P'), as otherwise y is neither in C(P) nor in C(P'), and so y would be an ordinary 

Pointer in the intersection of the box and line. If indeed it was overlooked earlier, it can be used to 

eliminate y from q (rendering case 2 inapplicable). 

Subcase 2a: If y is not in C(Q'), then A1 of Q' ↣ P' eliminates y from P'. 

Subcase 2b: If y is in C(Q'), then A2 of Q' ↣ P' eliminates y from q. 

 

73 
 


	SOME NOVEL ​SUDOKU PATTERNS 
	About this document 
	Target audience 
	Common terminology & notation 

	SK-Loop 
	Applications 
	Examples 
	A1 
	A2 
	A3 

	Good vs. bad digits 
	Finding good digits one at a time 
	Finding all bad digits (almost) at once 
	Example (1 segment + 1 ALS) 
	Example (2 segments +  1 ALS) 
	Example (2 segments +  2 ALSes)​ 

	Finding bad digits using regularity 
	Example (regularity + 1 ALS) 
	Example (regularity + 3 ALSes)​ 

	More regularity 
	Example (4 ALSes + 7 chains)​ 


	Newton's Cradle  
	Applications 
	Additional applications when Pₙ sees P₁ 
	Examples 
	A1 
	A3 
	A4 
	A4+A5 
	A6 
	A7 

	Varia 

	Domino Chain 
	Applications 
	Examples 
	A1 
	A2 

	Varia 

	Flying Fry 
	Terminology 
	Applications 
	Multiple targets 
	Multiple sources 
	Examples 
	A1 
	A4 
	A5 
	A6 

	Varia 

	Anti-Pointer 
	Applications 
	Examples 
	A1 
	A2 

	Varia 

	XY-Flipbox 
	Applications 
	Examples 
	A1 or A2 
	A1 and A2 


	XY-Coloring 
	Applications 
	Coloring rules 
	Examples 
	A1 
	A2 
	A3 

	Varia 

	Locked Set Coloring 
	Applications 
	Coloring rules 
	Examples 
	A1+A2+A3 

	Varia 

	Pointing Pair 
	Applications 
	Examples 
	A1 
	A1 (tiny pointers) 
	A2 

	Varia 

	Translocation 
	Type 1 (1 bilocation) 
	Type 2 (1 bilocation + 1 bivalued cell) 
	Type 3 (1 translocation + 1 bilocation) 
	More types 

	Translocation Chain 
	Applications 
	Examples 
	A1 
	A2 
	A3 
	A4 

	Varia 

	Siamese Twins 
	Terminology 
	Applications 
	Examples 
	hip=box, N=1 
	Hip=box, N=2 
	Hip=column, N=2 
	Hip=box, N=3 ("Triple Firework") 

	Hip=row, N=3 
	Varia 

	Naked SM-Wing 
	Applications 
	Examples 
	A1 

	Varia 

	Hidden SM-Wing 
	Applications 
	Examples 
	A1 

	Varia 

	Half Naked ALS Pair 
	Applications 
	Examples 
	A1 
	A2 
	A3 (K=1) 
	A3 (K=2) 
	A4 + A5 

	Varia 

	Puppet Master 
	Applications 
	Examples 
	Varia 

	Near-death Blossom 
	Applications 
	Examples 
	A1 
	A1 (with overlapping wings) 
	Varia 


	ALS-PQ Wing 
	Applications 
	Examples 
	A1 

	Varia 

	Digit Comb 
	Applications 
	Examples 
	2 NALSes 
	2 NALSes + 1 HALS. 
	2 HALSes 
	HALS + cell 


	Nested Cycle 
	Combining cycles 
	A minor simplification 
	Seeding cycles 
	Seeding cycles based on SK-Loop 
	Examples 
	1 cycle, seeded by SK-Loop 
	2 cycles 


	Appendix (some deferred proofs) 
	Anti-Pointer 
	It’s never needed to consider sets P larger than 3 cells in Anti-pointer. 



