
The Double-Entry Counting Method
Martin Blais, December 2016

http://furius.ca/beancount/doc/double-entry

Introduction
Basics of Double-Entry Bookkeeping

Statements
Single-Entry Bookkeeping
Double-Entry Bookkeeping
Many Accounts
Multiple Postings

Types of Accounts
Trial Balance
Income Statement
Clearing Income
Equity
Balance Sheet
Summarizing
Period Reporting
Chart of Accounts

Country-Institution Convention
Credits & Debits
Accounting Equations
Plain-Text Accounting
The Table Perspective

Introduction
This document is a gentle introduction to the double-entry counting method, as written from the
perspective of a computer scientist. It is an attempt to explain basic bookkeeping using as simple an
approach as possible, doing away with some of the idiosyncrasies normally involved in accounting.
It is also representative of how Beancountworks, and it should be useful to all users of plain-text
accounting.

Note that I am not an accountant, and in the process of writing this document I may have used
terminology that is slightly different or unusual to that which is taught in perhaps more traditional
training in accounting. I granted myself license to create something new and perhaps even unusual
in order to explain those ideas as simply and clearly as possible to someone unfamiliar with them.

I believe that the method of double-entry counting should be taught to everyone at the high school
level everywhere as it is a tremendously useful organizational skill, and I hope that this text can help
spread its knowledge beyond professional circles.

Basics of Double-Entry Bookkeeping
The double-entry system is just a simplemethod of counting, with some simple rules.

http://furius.ca/beancount/doc/double-entry
http://furius.ca/beancount/
http://plaintextaccounting.org/
http://plaintextaccounting.org/

Let’s begin by defining the notion of an account. An account is something that can contain things,
like a bag. It is used to count things, to accumulate things. Let’s draw a horizontal arrow to visually
represent the evolving contents of an account over time:

On the left, we have the past, and to the right, increasing time: the present, the future, etc.

For now, let’s assume that accounts can contain only one kind of thing, for example, dollars. All
accounts begin with an empty content of zero dollars. We will call the number of units in the
account the balance of an account. Note that it represents its contents at a particular point in time. I
will draw the balance using a number above the account’s timeline:

The contents of accounts can change over time. In order to change the content of an account, we
have to add something to it. We will call this addition a posting to an account, and I will draw this
change as a circled number on the account’s timeline, for example, adding $100 to the account:

Now, we can draw the updated balance of the account after the posting with another little number
right after it:

The account’s balance, after adding $100, is now $100.

We can also remove from the contents of an account. For example, we could remove $25, and the
resulting account balance is now $75:

Account balances can also become negative, if we remove more dollars than there are in the
account. For example, if we remove $200 from this account, the balance now becomes $-125:

It’s perfectly fine for accounts to contain a negative balance number. Remember that all we’re doing
is counting things. As we will see shortly, some accounts will remain with a negative balance for
most of their timeline.

Statements
Something worthy of notice is how the timeline notation I’ve written in the previous section is
analogous to paper account statements institutions maintain for each client and which you typically
receive through the mail:

Date Description Amount Balance

2016-10-02 ... 100.00 1100.00

2016-10-05 ... -25.00 1075.00

2016-10-06 ... -200.00 875.00

Final Balance 875.00

Sometimes the amount column is split into two, one showing the positive amounts and the other the
negative ones:

Date Description Debit Credit Balance

2016-10-02 ... 100.00 1100.00

2016-10-05 ... 25.00 1075.00

2016-10-06 ... 200.00 875.00

Final Balance 875.00

Here, “debit” means “removed from your account” and “credit” means “deposited in your account.”
Sometimes the words “withdrawals” and “deposits” will be used. It all depends on context: for
checking and savings accounts it is usual to have both types of postings, but for a credit card
account typically it shows only positive numbers and then the occasional monthly payment so the
single column format is used.

In any case, the “balance” column always shows the resulting balance after the amount has been
posted to the account. And sometimes the statements are rendered in decreasing order of time.

Single-Entry Bookkeeping
In this story, this account belongs to someone. We’ll call this person the owner of the account. The
account can be used to represent a real world account, for example, imagine that we use it to
represent the content of the owner’s checking account at a bank. So we’re going to label the account
by giving it a name, in this case “Checking”:

Imagine that at some point, this account has a balance of $1000, like I’ve drawn on the picture. Now,
if the owner spends $79 of this account, we would represent it like this:

Furthermore, if the expense was for a meal at a restaurant, we could flag the posting with a
category to indicate what the change was used for. Let’s say, “Restaurant”, like this:

Now, if we have a lot of these, we could write a computer program to accumulate all the changes for
each category and calculate the sums for each of them. That would tell us howmuch we spent in
restaurants in total, for example. This is called the single-entry method of accounting.

But we’re not going to do it this way; we have a better way. Bear with me for a few more sections.

Double-Entry Bookkeeping
An owner may have multiple accounts. I will represent this by drawing many similar account
timelines on the same graphic. As before, these are labeled with unique names. Let’s assume that
the owner has the same “Checking” account as previously, but now also a “Restaurant” account as
well, which can be used to accumulate all food expenses at restaurants. It looks like this:

Now, instead of categorizing the posting to a “restaurant category” as we did previously, we could
create a matching posting on the “Restaurant” account to record howmuch we spent for food, with
the amount spent ($79):

The “Restaurant” account, like all other accounts, also has an accumulated balance, so we can find
out howmuch we spent in “Restaurant” in total. This is entirely symmetrical to counting changes in
a checking account.

Now, we can associate the two postings together, by creating a kind of “parent” box that refers to
both of them. We will call this object a transaction:

Notice here that we’ve also associated a description to this transaction: “Dinner at Uncle Boons”. A
transaction also has a date, and all of its postings are recorded to occur on that date. We call this the
transaction date.

We can now introduce the fundamental rule of double-entry bookkeeping system:

The sum of all the postings of a transaction must equal zero.

Remember this, as this is the foundation of the double-entry method, and its most important
characteristic. It has important consequences which I will discuss later in this document.

In our example, we remove $79 from the “Checking” account and “give it” to the “Restaurant”
account. ($79) + ($-79) = $0. To emphasize this, I could draw a little summation line under the
postings of the transaction, like this:

Many Accounts
There may be many such transactions, over many different accounts. For example, if the owner of
the accounts had a lunch the next day which she paid using a credit card, it could be represented by
creating a “Credit Card” account dedicated to tracking the real world credit card balance, and with a
corresponding transaction:

In this example, the owner spent $35 at a restaurant called “Eataly.” The previous balance of the
owner’s credit card was $-450; after the expense, the new balance is $-485.

For each real world account, the owner can create a bookkeeping account like we did. Also, for each
category of expenditure, the owner also creates a bookkeeping account. In this system, there are no
limits to howmany accounts can be created.

Note that the balance in the example is a negative number; this is not an error. Balances for credit
card accounts are normally negative: they represent an amount you owe, that the bank is lending
you on credit. When your credit card company keeps track of your expenses, they write out your
statement from their perspective, as positive numbers. For you, those are amounts you need to
eventually pay. But here, in our accounting system, we’re representing numbers from the owner’s

point-of-view, and from her perspective, this is money she owes, not something she has. What we
have is a meal sitting in our stomach (a positive number of $ of “Restaurant”).

Multiple Postings
Finally, transactions may have more than two postings; in fact, they may have any number of
postings. The only thing that matters is that the sum of their amounts is zero (from the rule of
double-entry bookkeeping above).

For example, let’s look at what would happen if the owner gets her salary paid for December:

Her gross salary received in this example is recorded as $-2,905 (I’ll explain the sign in a moment).
$905 is set aside for taxes. Her “net” salary of $2,000, the remainder, is deposited in her “Checking”
account and the resulting balance of that account is $2,921 (the previous balance of $921 + $2,000 =
$2,921). This transaction has three postings: (+2,000) + (-2,905) + (+905) = 0. The double-entry
rule is respected.

Now, you may ask: Why is her salary recorded as a negative number? The reasoning here is similar
to that of the credit card above, though perhaps a bit more subtle. These accounts exist to track all
the amounts from the owner’s point-of-view. The owner gives out work, and receives money and
taxes in exchange for it (positive amounts). The work given away is denominated in dollar units. It
“leaves” the owner (imagine that the owner has potential work stored in her pocket and as she goes
into work every day sprinkles that work potential giving it to the company). The owner gave
$2,905’s worth of work away. We want to track howmuch work was given, and it’s done with the
“Salary” account. That’s her gross salary.

Note also that we’ve simplified this paycheck transaction a bit, for the sake of keeping things simple.
A more realistic recording of one’s pay stub would have many more accounts; we would separately
account for state and federal tax amounts, as well as social security and medicare payments,
deductions, insurance paid through work, and vacation time accrued during the period. But it
wouldn’t be much more complicated: the owner would simply translate all the amounts available
from her pay stub into a single transaction with more postings. The structure remains similar.

Types of Accounts
Let’s now turn our attention to the different types of accounts an owner can have.

Balance or Delta. First, the most important distinction between accounts is about whether we care
about the balance at a particular point in time, or whether it only makes sense to care about
differences over a period of time. For example, the balance of someone’s Checking or Savings
accounts is a meaningful number that both the owner and its corresponding bank will care about.
Similarly, the total amount owed on someone’s Credit Card account is also meaningful. The same
goes with someone’s remaining Mortgage amount to pay on a house.

On the other hand, the total amount of Restaurant expenses since the beginning of somebody’s life
on earth is not particularly interesting. What we might care about for this account is the amount of
Restaurant expenses incurred over a particular period of time. For example, “howmuch did you
spend in restaurants last month?” Or last quarter. Or last year. Similarly, the total amount of gross
salary since the beginning of someone’s employment at a company a few years ago is not very
important. But we would care about the total amount earned during a tax year, that is, for that time
period, because it is used for reporting one’s income to the tax man.

● Accounts whose balance at a point in time is meaningful are called balance sheet accounts.
There are two types of such accounts: “Assets” and “Liabilities.”

● The other accounts, that is, those whose balance is not particularly meaningful but for which
we are interested in calculating changes over a period of time are called income statement
accounts. Again, there are two kinds: “Income” and “Expenses.”

Normal sign. Secondly, we consider the usual sign of an account’s balance. The great majority of
accounts in the double-entry system tend to have a balance with always a positive sign, or always a
negative sign (though as we’ve seen previously, it is not impossible that an account’s balance could
change signs). This is how we will distinguish between the pairs of accounts mentioned before:

● For a balance sheet account, Assets normally have positive balances, and Liabilities normally
have negative balances.

● For income statement accounts, Expenses normally have a positive balance, and Income
accounts normally have a negative balance.

This situation is summarized in the following table:

Balance: Positive (+) Balance: Negative (-)

Balance matters
at a point in time

(Balance Sheet)

Assets Liabilities

Change in balance matters
over a period of time

(Income Statement)

Expenses Income

Let’s discuss each type of account and provide some examples, so that it doesn’t remain too
abstract.

● Assets. (+) Asset accounts represent something the owner has. A canonical example is
banking accounts. Another one is a “cash” account, which counts howmuch money is in
your wallet. Investments are also assets (their units aren’t dollars in this case, but rather
some number of shares of some mutual fund or stock). Finally, if you own a home, the home
itself is considered an asset (and its market value fluctuates over time).

● Liabilities. (-) A liability account represents something the owner owes. The most common
example is a credit card. Again, the statement provided by your bank will show positive
numbers, but from your own perspective, they are negative numbers. A loan is also a
liability account. For example, if you take out a mortgage on a home, this is money you owe,
and will be tracked by an account with a negative amount. As you pay off the mortgage every
month the negative number goes up, that is, its absolute value gets smaller and smaller over
time (e.g., -120,000 -> -117,345).

● Expenses. (+) An expense account represents something you’ve received, perhaps by
exchanging something else to purchase it. This type of account will seem pretty natural:
food, drinks, clothing, rent, flights, hotels and most other categories of things you typically
spend your disposable income on. However, taxes are also typically tracked by an expense
account: when you receive some salary income, the amount of taxes withheld at the source
is recorded immediately as an expense. Think of it as paying for government services you
receive throughout the year.

● Income. (-) An income account is used to count something you’ve given away in order to
receive something else (typically assets or expenses). For most people with jobs, that is the
value of their time (a salary income). Specifically, here we’re talking about the gross income.
For example, if you’re earning a salary of $120,000/year, that number is $120,000, not
whatever amount remains after paying for taxes. Other types of income includes dividends
received from investments, or interest paid from bonds held. There are also a number of
oddball things received you might record as income, such the value of rewards received, e.g.,
cash back from a credit card, or monetary gifts from someone.

In Beancount, all account names, without exception, must be associated to one of the types of
accounts described previously. Since the type of an account never changes during its lifetime, we

will make its type a part of an account’s name, as a prefix, by convention. For example, the qualified
account name for restaurant will be “Expenses:Restaurant”. For the bank checking account, the
qualified account name will be “Assets:Checking”.

Other than that, you can select any name you like for your accounts. You can create as many
accounts as you like, and as we will see later, you can organize them in a hierarchy. As of the writing
of this document, I’m using more than 700 accounts to track my personal affairs.

Let us now revisit our example and add some more accounts:

And let’s imagine there are more transactions:

… and even more of them:

Finally, we can label each of those accounts with one of the four types of accounts by prepending the
type to their account names:

A realistic book from someone tracking all of their personal affairs might easily contain thousands
of transactions per year. But the principles remain simple and they remain the same: postings are
applied to accounts over time, and must be parented to a transaction, and within this transaction
the sum of all the postings is zero.

When you do bookkeeping for a set of accounts, you are essentially describing all the postings that
happen on all the accounts over time, subject to the constraint of the rule. You are creating a
database of those postings in a book. You are “keeping the book,” that is, traditionally, the book
which contains all those transactions. Some people call this “maintaining a journal.”

Wewill now turn our attention to obtaining useful information from this data, summarizing
information from the book.

Trial Balance
Take our last example: we can easily reorder all the accounts such that all the Asset accounts appear
together at the top, then all the Liabilities accounts, then Income, and finally Expenses accounts. We
are simply changing the order without modifying the structure of transactions, in order to group
each type of accounts together:

We’ve reordered the accounts with Assets accounts grouped at the top, then Liabilities, then some
Equity accounts (which we have just introduced, more about them is discussed later), then Income
and finally Expenses at the bottom.

If we sum up the postings on all of the accounts and render just the account name and its final
balance on the right, we obtain a report we call the “trial balance.”

This simply reflects the balance of each account at a particular point in time. And because each of
the accounts began with a zero balance, and each transaction has itself a zero balance, we know that
the sum of all those balances must equal zero. This is a consequence of our constraining that each1

of the postings be part of a transaction, and that each transaction have postings that balance each
other out.

Income Statement
One kind of common information that is useful to extract from the list of transactions is a summary
of changes in income statement accounts during a particular period of time. This tells us howmuch
money was earned and spent during this period, and the difference tells us howmuch profit (or
loss) was incurred. We call this the “net income.”

In order to generate this summary, we simply turn our attention to the balances of the accounts of
types Income and Expenses, summing up just the transactions for a particular period, and we draw
the Income balances on the left, and Expenses balances on the right:

1 Please don’t pay attention to the numbers in these large figures, they were randomly generated and don’t
reflect this. We’re just interested in showing the structure, in these figures.

It is important to take note of the signs here: Income numbers are negative, and Expenses numbers
are positive. So if you earned more than you spent (a good outcome), the final sum of Income +
Expenses balances will be a negative number. Like any other income, a net income that has a
negative number means that there is a corresponding amount of Assets and/or Liabilities with
positive numbers (this is good for you).

An Income Statement tells us what changed during a particular period of time. Companies typically
report this information quarterly to investors and perhaps the public (if they are a publicly traded
company) in order to share howmuch profit they were able to make. Individuals typically report
this information on their annual tax returns.

Clearing Income
Notice how in the income statement only the transactions within a particular interval of time are
summed up. This allows one, for instance, to compute the sum of all income earned during a year. If
we were to sum up all of the transactions of this account since its inception we would obtain the
total amount of income earned since the account was created.

A better way to achieve the same thing is to zero out the balances of the Income and Expenses
accounts. Beancount calls this basic transformation “clearing .” It is carried out by:2

1. Computing the balances of those accounts from the beginning of time to the start of the
reporting period. For example, if you created your accounts in year 2000 and you wanted to
generate an income statement for year 2016, you would sum up the balances from 2000 to
Jan 1, 2016.

2. Inserting transactions to empty those balances and transfer them to some other account
that isn’t Income nor Expenses. For instance, if the restaurant expense account for those 16
years amounts to $85,321 on Jan 1, 2016, it would insert a transaction of $-85,321 to
restaurants and $+85,321 to “previous earnings”. The transactions would be dated Jan 1,

2 Note that this is unrelated to the term “clearing transactions” which means acknowledging or marking that
some transactions have been eyeballed by the bookkeeper and checked for correctness.

2016. Including this transaction, the sum of that account would zero on that date. This is
what we want.

Those transactions inserted for all income statement accounts are pictured in green below. Now
summing the entire set of transactions through the end of the ledger would yield only the changes
during year 2016 because the balances were zero on that date:

This is the semantics of the “CLEAR” operation of the bean-query shell.

(Note that another way to achieve the same thing for income statement accounts would be to
segregate and count amounts only for the transactions after the clearing date; however, jointly
reporting on income statement accounts and balance sheet accounts would have incorrect balances
for the balance sheet accounts.)

Equity
The account that receives those previously accumulated incomes is called “Previous Earnings”. It
lives in a fifth and final type of accounts: Equity. We did not talk about this type of accounts earlier
because they are most often only used to transfer amounts to build up reports, and the owner
usually doesn’t post changes to those types of accounts; the software does that automatically, e.g.,
when clearing net income.

The account type “equity” is used for accounts that hold a summary of the net income implied by all
the past activity. The point is that if we now list together the Assets, Liabilities and Equity accounts,
because the Income and Expenses accounts have been zero’ed out, the sum total of all these
balances should equal exactly zero. And summing up all the Equity accounts clearly tells us what’s
our stake in the entity, in other words, if you used the assets to pay off all the liabilities, how much is
left in the business… howmuch it’s worth.

Note that the normal sign of the Equity accounts is negative. There is no particular meaning to that,
just that they are used to counterbalance Assets and Liabilities and if the owner has any value, that
number should be negative. (A negative Equity means some positive net worth.)

There are a few different Equity accounts in use in Beancount:

● Previous Earnings or Retained Earnings. An account used to hold the sum total of Income
& Expenses balances from the beginning of time until the beginning of a reporting period.
This is the account we were referring to in the previous section.

● Current Earnings, also called Net Income. An account used to contain the sum of Income &
Expenses balances incurred during the reporting period. They are filled in by “clearing” the
Income & Expenses accounts at the end of the reporting period.

● Opening Balances. An equity account used to counterbalance deposits used to initialize
accounts. This type of account is used when we truncate the past history of transactions, but
we also need to ensure that an account’s balance begins its history with a particular amount.

Once again: you don’t need to define nor use these accounts yourself, as these are created for the
purpose of summarizing transactions. Generally, the accounts are filled in by the clearing process
described above, or filled in by Pad directives to “opening balances” equity accounts, to account for
summarized balances from the past. They are created and filled in automatically by the software.
We’ll see how these get used in the following sections.

Balance Sheet
Another kind of summary is a listing of the owner’s assets and debts, for each of the accounts. This
answers the question: “Where’s the money?” In theory, we could just restrict our focus to the Assets
and Liabilities accounts and draw those up in a report:

However, in practice, there is another closely related question that comes up and which is usually
answered at the same time: “Once all debts are paid off, how much are we left with?” This is called
the net worth.

If the Income & Expenses accounts have been cleared to zero and all their balances have been
transferred to Equity accounts, the net worth should be equal to the sum of all the Equity accounts.

So in building up the Balance Sheet, it it customary to clear the net income and then display the
balances of the Equity accounts. The report looks like this:

Note that the balance sheet can be drawn for any point in time, simply by truncating the list of
transactions following a particular date. A balance sheet displays a snapshot of balances at one date;
an income statement displays the difference of those balances between two dates.

Summarizing
It is useful to summarize a history of past transactions into a single equivalent deposit. For example,
if we’re interested in transactions for year 2016 for an account which has a balance of $450 on Jan 1,
2016, we can delete all the previous transactions and replace them with a single one that deposits
$450 on Dec 31, 2015 and that takes it from somewhere else.

That somewhere else will be the Equity account Opening Balances. First, we can do this for all
Assets and Liabilities accounts (see transactions in blue):

Then we delete all the transactions that precede the opening date, to obtain a truncated list of
transactions:

This is a useful operation when we’re focused on the transactions for a particular interval of time.

(This is a bit of an implementation detail: these operations are related to how Beancount is
designed. Instead of making all the reporting operations with parameters, all of its reporting
routines are simplified and instead operate on the entire stream of transactions; in this way, we
convert the list of transactions to include only the data we want to report on. In this case,
summarization is just a transformation which accepts the full set of transactions and returns an
equivalent truncated stream. Then, from this stream, a journal can be produced that excludes the
transactions from the past.

From a program design perspective, this is appealing because the only state of the program is a
stream of transactions, and it is never modified directly. It’s simple and robust.)

Period Reporting
Nowwe know we can produce a statement of changes over a period of time, by “clearing” and
looking at just the Income & Expenses accounts (the Income Statement). We also know we can clear
to produce a snapshot of Assets, Liabilities & Equity at any point in time (the Balance Sheet).

More generally, we’re interested in inspecting a particular period of time. That implies an income
statement, but also two balance sheet statements: the balance sheet at the beginning of the period,
and the balance sheet at the end of the period.

In order to do this, we apply the following transformations:

● Open.We first clear net income at the beginning of the period, to move all previous income
balances to the Equity Previous Earnings account. We then summarize up to the beginning
of the period. We call the combination of clearing + summarizing: “Opening.”

● Close.We also truncate all the transactions following the end of the reporting period. We
call this operation “Closing.”

These are the meaning of the “OPEN” and “CLOSE” operations of the bean-query shell . The3

resulting set of transactions should look like this.

“Closing” involves two steps. First, we remove all transactions following the closing date:

We can process this stream of transactions to produce an Income Statement for the period.

Then we clear again at the end date of the desired report, but this time we clear the net income to
“Equity:Earnings:Current”:

3 Note that operations have nothing to do with the Open and Close directives Beancount provides.

From these transactions, we produce the Balance Sheet at the end of the period.

This sums up the operations involved in preparing the streams of transactions to produce reports
with Beancount, as well as a basic introduction to those types of reports.

Chart of Accounts
New users are often wondering howmuch detail they should use in their account names. For
example, should one include the payee in the account name itself, such as in these examples?

Expenses:Phone:Mobile:VerizonWireless

Assets:AccountsReceivable:Clients:AcmeInc

Or should one use simpler names like the following, relying instead on the “payee”, “tags”, or
perhaps some other metadata in order to group the postings?

Expenses:Phone

Assets:AccountsReceivable

The answer is that it depends on you. This is an arbitrary choice to make. It’s a matter of taste.
Personally I like to abuse the account names a bit and create long descriptive ones, other people
prefer to keep them simple and use tags to group their postings. Sometimes one doesn’t even need
to filter subgroups of postings. There’s no right answer, it depends on what you’d like to do.

One consideration to keep in mind is that account names implicitly define a hierarchy. The “:”
separator is interpreted by some reporting code to create an in-memory tree and can allow you to
collapse a node’s children subaccounts and compute aggregates on the parent. Think of this as an
additional way to group postings.

Country-Institution Convention
One convention I’ve come up with that works well for my assets, liabilities and income accounts is
to root the tree with a code for the country the account lives in, followed by a short string for the
institution it corresponds to. Underneath that, a unique name for the particular account in that
institution. Like this:

<type> : <country> : <institution> : <account>

For example, a checking account could be chosen to be “Assets:US:BofA:Checking”, where
“BofA” stands for “Bank of America.” A credit card account could include the name of the particular
type of card as the account name, like “Liabilities:US:Amex:Platinum”, which can be useful if
you have multiple cards.

I’ve found it doesn’t make sense for me to use this scheme for expense accounts, since those tend to
represent generic categories. For those, it seems to make more sense to group them by category, as
in using “Expenses:Food:Restaurant” instead of just “Expenses:Restaurant”.

In any case, Beancount doesn’t enforce anything other than the root accounts; this is just a
suggestion and this convention is not coded anywhere in the software. You have great freedom to
experiment, and you can easily change all the names later by processing the text file. See the
Cookbook for more practical guidance.

Credits & Debits
At this point, we haven’t discussed the concepts of “credits” and “debits.” This is on purpose:
Beancount largely does away with these concepts because it makes everything else simpler. I believe
that it is simpler to just learn that the signs of Income, Liabilities and Equity accounts are normally
negative and to treat all accounts the same way than to deal with the debits and credits terminology
and to treat different account categories differently. In any case, this section explains what these are.

As I have pointed out in previous sections, we consider “Income”, “Liabilities” and “Equity” accounts
to normally have a negative balance. This may sound odd; after all, nobody thinks of their gross
salary as a negative amount, and certainly your credit-card bill or mortgage loan statements report
positive numbers. This is because in our double-entry accounting system we consider all accounts
to be held from the perspective of the owner of the account. We use signs consistent from this
perspective, because it makes all operations on account contents straightforward: they’re all just
simple additions and all the accounts are treated the same.

In contrast, accountants traditionally keep all the balances of their accounts as positive numbers
and then handle postings to those accounts differently depending on the account type upon which
they are applied. The sign to apply to each account is entirely dictated by its type: Assets and
Expenses accounts are debit accounts and Liabilities, Equity and Income accounts are credit
accounts and require a sign adjustment. Moreover, posting a positive amount on an account is called
“debiting” and removing from an account is called “crediting.” See this external document, for
example, which nearly makes my head explode, and this recent thread has more detail. This way of
handling postings makes everything much more complicated than it needs to be.

The problem with this approach is that summing of amounts over the postings of a transaction is
not a straightforward sum anymore. For example, let’s say you’re creating a new transaction with
postings to two Asset accounts, an Expenses account and an Income account and the system tells
you there is a $9.95 imbalance error somewhere. You’re staring at the entry intently; which of the
postings is too small? Or is one of the postings too large? Also, maybe a new posting needs to be
added, but is it to a debit account or to a credit account? The mental gymnastics required to do this
are taxing. Some double-entry accounting software tries to deal with this by creating separate
columns for debits and credits and allowing the user enter an amount only in the column that
corresponds to each posting account’s type. This helps visually, but why not just use signs instead?

Moreover, when you look at the accounting equations, you have to consider their signs as well. This
makes it awkward to do transformations on them and make what is essentially a simple summation
over postings into a convoluted mess that is difficult to understand.

In plain-text accounting, we would rather just do away with this inconvenient baggage. We just use
additions everywhere and learn to keep in mind that Liabilities, Equity and Income accounts

http://furius.ca/beancount/doc/cookbook
http://www.accountingtools.com/debits-and-credits
https://groups.google.com/d/msgid/beancount/CAPD_o%2B8W2BpTA9qtmMvaTdqdW51v%2Bt5uFrMRbZ93aPqoWokzQw%40mail.gmail.com

normally have a negative balance. While this is unconventional, it’s much easier to grok. And If there
is a need to view a conventional report with positive numbers only, we will be able to trigger that in
reporting code , inverting the signs just to render them in the output.4

Save yourself some pain: Flush your brain from the "debit" and "credit" terminology.

Accounting Equations
In light of the previous sections, we can easily express the accounting equations in signed terms. If,

● A = the sum of all Assets postings
● L = the sum of all Liabilities postings
● X = the sum of all Expenses postings
● I = the sum of all Income postings
● E = the sum of all Equity postings

We can say that:

A + L + E + X + I = 0

This follows from the fact that

sum(all postings) = 0

Which follows from the fact that each transaction is guaranteed to sum up to zero (which is
enforced by Beancount):

for all transactions t, sum(postings of t) = 0

Moreover, the sum of postings from Income and Expenses is the Net Income (NI):

NI = X + I

If we adjust the equity to reflect the total Net Income effect by clearing the income to the Equity
retained earnings account, we get an updated Equity value (E’):

E’ = E + NI = E + X + I

And we have a simplified accounting equation:

A + L + E’ = 0

If we were to adjust the signs for credits and debits (see previous section) and have sums that are all
positive number, this becomes the familiar accounting equation:

Assets - Liabilities = Equity

As you can see, it’s much easier to just always add up the numbers.

4 This is not provided yet in Beancount, but would be trivial to implement. All we'd need to do is invert the
signs of balances from Liabilities, Income and Equity accounts. It's on the roadmap to provide this eventually.

Plain-Text Accounting
Ok, so now we understand the method and what it can do for us, at least in theory. The purpose of a
double-entry bookkeeping system is to allow you to replicate the transactions that occur in various
real world accounts into a single, unified system, in a common representation, and to extract various
views and reports from this data. Let us now turn our attention to how we record this data in
practice.

This document talks about Beancount, whose purpose is “double-entry bookkeeping using text
files.” Beancount implements a parser for a simple syntax that allows you to record transactions and
postings. The syntax for an example transaction looks something like this:

2016-12-06 * "Biang!" "Dinner"

Liabilities:CreditCard -47.23 USD

Expenses:Restaurants

You write many of declarations like these in a file, and Beancount will read it and create the
corresponding data structures in memory.

Verification. After parsing the transactions, Beancount also verifies the rule of the double-entry
method: it checks that the sum of the postings on all your transactions is zero. If you make a mistake
and record a transaction with a non-zero balance, an error will be displayed.

Balance Assertions. Beancount allows you to replicate balances declared from external accounts,
for example, a balance written on a monthly statement. It processes those and checks that the
balances resulting from your input transactions match those declared balances. This helps you
detect and find mistakes easily.

Plugins. Beancount allows you to build programs which can automate and/or process the streams
of transactions in your input files. You can build custom functionality by writing code which directly
processes the transaction stream.

Querying & Reporting. It provides tools to then process this stream of transactions to produce the
kinds of reports we discussed earlier in this document.

There are a few more details, for example, Beancount allows you to track cost basis and make
currency conversions, but that’s the essence of it.

The Table Perspective
Almost always, questions asked by users on the mailing-list about how to calculate or track some
value or other can be resolved easily simply by thinking of the data as a long list of rows, some of
which need to be filtered and aggregated. If you consider that all that we’re doing in the end is
deriving “sums” of these postings, and that the attributes of transactions and postings are what
allows us to filter subsets of postings, it always becomes very simple. In almost all the cases, the

answer is to find some way to disambiguate postings to select them, e.g. by account name, by
attaching some tag, by using some metadata, etc. It can be illuminating to consider how this data
can be represented as a table.

Imagine that you have two tables: a table containing the fields of each Transaction such as date and
description, and a table for the fields of each Posting, such as account, amount and currency, as well
as a reference to its parent transaction. The simplest way to represent the data is to join those two
tables, replicating values of the parent transaction across each of the postings.

For example, this Beancount input:

2016-12-04 * "Christmas gift"

Liabilities:CreditCard -153.45 USD

Expenses:Gifts

2016-12-06 * "Biang!" "Dinner"

Liabilities:CreditCard -47.23 USD

Expenses:Restaurants

2016-12-07 * "Pouring Ribbons" "Drinks with friends"

Assets:Cash -25.00 USD

Expenses:Tips 4.00 USD

Expenses:Alcohol

could be rendered as a table like this:

Date Fl Payee Narration Account Number Ccy

2016-12-04 * Christmas gift Liabilities:CreditCard -153.45 USD

2016-12-04 * Christmas gift Expenses:Gifts 153.45 USD

2016-12-06 * Biang! Dinner Liabilities:CreditCard -47.23 USD

2016-12-06 * Biang! Dinner Expenses:Restaurants 47.23 USD

2016-12-07 * Pouring Ribbons Drinks with friends Assets:Cash -25.00 USD

2016-12-07 * Pouring Ribbons Drinks with friends Expenses:Tips 4.00 USD

2016-12-07 * Pouring Ribbons Drinks with friends Expenses:Alcohol 21.00 USD

Notice how the values of Transaction fields are replicated for each posting. This is exactly like a
regular database join operation. The posting fields begin at column “Account.” (Also note that this
example table is simplified; in practice there are many more fields.)

If you had a joined table just like this you could filter it and sum up amounts for arbitrary groups of
postings. This is exactly what the bean-query tool allows you to do: You can run an SQL query on the
data equivalent to this in-memory table and list values like this:

SELECT date, payee, number WHERE account = "Liabilities:CreditCard";

Or sum up positions like this:

SELECT account, sum(position) GROUP BY account;

This simple last command generates the trial balance report.

Note that the table representation does not inherently constrain the postings to sum to zero. If your
selection criteria for the rows (in the WHERE clause) always selects all the postings for each of the
matching transactions, you are ensured that the final sum of all the postings is zero. If not, the sum
may be anything else. Just something to keep in mind.

If you’re familiar with SQL databases, you might ask why Beancount doesn’t simply process its data
in order to fill up an existing database system, so that the user could then use those database’s tools.
There are two main reasons for this:

● Reporting Operations. In order to generate income statements and balance sheets, the list
of transactions needs to be preprocessed using the clear, open and close operations
described previously. These operations are not trivial to implement in database queries and
are dependent on just the report and ideally don’t need to modify the input data. We’d have
to load up the posting data into memory and then run some code. We’re already doing that
by parsing the input file; the database step would be superfluous.

● Aggregating Positions. Though we haven’t discussed it in this document so far, the contents
of accounts may contain different types of commodities, as well as positions with an
attached cost basis. The way that these positions are aggregated together requires the
implementation of a custom data type because it obeys some rules about how positions are
able to cancel each other out (see How Inventories Work for details). It would be very
difficult to build these operations with an SQL database beyond the context of using just a
single currency and ignoring cost basis.

This is why Beancount provides a custom tool to directly process and query its data: It provides its
own implementation of an SQL client that lets you specify open and close dates and leverages a
custom “Inventory” data structure to create sums of the positions of postings. This tools supports
columns of Beancount’s core types: Amount, Position and Inventory objects.

(In any case, if you’re not convinced, Beancount provides a tool to export its contents to a regular
SQL database system. Feel free to experiment with it if you like, knock yourself out.)

http://furius.ca/beancount/doc/inventories
https://github.com/beancount/beancount/tree/v2/bin/bean-sql

