Station 1: Fill in the Blanks

Problem solving

2 Copy and complete each identity, using integer values.

a
$$\Box x^2 - 100 = (3x - \Box)(3x + \Box)$$

b
$$25y^2 - \Box \equiv (\Box y - 4)(\Box y + 4)$$

c
$$16a^2 - \Box b^2 \equiv (\Box a - \Box b)(\Box a + 7b)$$
 d $\Box u^2 - \Box \equiv (3u + 2)(3u + \Box)$

d
$$\square u^2 - \square \equiv (3u + 2)(3u + \square)$$

$$\mathbf{e} \Box t^2 - \Box \equiv (3t+5)(\Box t-20)$$

$$\mathbf{f} \square x^2 - \square \equiv (3x+4)(6x-\square)$$

5 Copy and complete, using integer values:

a
$$x^2 - \Box x + 12 \equiv (x - 3)(x - \Box)$$

b
$$x^2 \square \square x + 16 \equiv (x - 8)(x \square \square)$$

c
$$x^2 - 5x \square \square \equiv (x + \square)(x - 7)$$

c
$$x^2 - 5x \square \square \equiv (x + \square)(x - 7)$$
 d $x^2 \square 9x + 20 \equiv (x + 5)(x \square \square)$

e
$$x^2 \square 10x \square 16 \equiv (x + \square)(x + \square)$$
 f $x^2 - 5x \square 24 \equiv (x \square \square)(x \square \square)$

f
$$x^2 - 5x \square 24 \equiv (x \square \square)(x \square \square)$$

Copy and complete each identity, using integer values.

$$\mathbf{a} \quad \Box x^2 - 100 \equiv (3x - \Box)(3x + \Box)$$

b
$$25y^2 - \Box \equiv (\Box y - 4)(\Box y + 4)$$

c
$$16a^2 - \Box b^2 \equiv (\Box a - \Box b)(\Box a + 7b)$$
 d $\Box u^2 - \Box \equiv (3u + 2)(3u + \Box)$

d
$$\square u^2 - \square \equiv (3u+2)(3u+\square)$$

e
$$\Box t^2 - \Box \equiv (3t + 5)(\Box t - 20)$$

$$\mathbf{f} \Box x^2 - \Box \equiv (3x+4)(6x-\Box)$$

Station 2: Rectangular Areas

Find an expression for the unknown side in these rectangles:

Problem 2: Use algebra (don't just guess and check).

Its perimeter is 4x - 28. Find, in terms of x, the lengths of each of its sides.

Use the X-Factor method to help find as many possibilities as you can for each quadratic below.

These expressions can be factorized. Determine the different values that could fill the empty boxes.

a
$$3x^2 + \Box x + 2$$

b
$$\Box x^2 + 9x + 2$$

c
$$6x^2 + 10x + \Box$$

Station 3: Quadratic "Area" Problems

You have two rectangular grids of 1 cm^3 cubes, one measuring n + 1 by n + 6 cm, and the other measuring n + 3 by n + 3 cm, where n is a positive integer.

- a Find and simplify an expression for the total number of 1 cm³ cubes in the two rectangular grids combined.
- **b** Show that if you take apart the rectangles and recombine the 1 cm³ cubes you will always be able to form a rectangle with no cubes left over (where the rectangle will not simply be a straight line of cubes).

A rectangular sports pitch has a border of n meters on each side. The total area occupied by the pitch and its border is $4n^2 + 28n + 45$.

Find the dimensions of the pitch.

Station 4: Quadratic "Number" Word Problems

Ornella thinks of a whole number, adds four to it, squares the result, and subtracts 9.

- a By letting the original number be n, write down an expression for this process.
- b Hence show the number that Ornella obtains can always be written as the product of two integers with a difference of 6.

Dagmar thinks of an even number, squares it, and subtracts 1. By expressing his original number in the form 2n, or otherwise, **show** that the result of this process can be written as the product of two consecutive odd integers.

STATION 5: Bonus Practice - Review of Factoring Methods

A) Perfect Square Trinomials

a
$$x^2 + 14x + 49$$
 b $x^2 + 22x + 121$ **c** $x^2 - 12x + 36$

b
$$x^2 + 22x + 12$$

$$c x^2 - 12x + 36$$

B) Difference of Squares

2 Factorize fully:

a
$$x^2 - 49$$
 b $x^2 - 169$

b
$$x^2 - 169$$

c
$$64 - x^2$$

c
$$64-x^2$$
 d $25x^2-4$

e
$$144x^2 - 81$$

e
$$144x^2 - 81$$
 f $256x^2 - 169$

9
$$4x^2 - y^2$$

g
$$4x^2 - y^2$$
 h $16x^2 - 9y^2$

i
$$25x^2 - 289y^2$$
 j $x^4 - 16$

$$k 16x^4 - 1$$

k
$$16x^4 - 1$$
 l $9x^4 - 729y^4$

- C) Quadratic Trinomials (a = 1) Factor out GCF first, then X-Factor
- 3 Factorize completely:

a
$$2x^2 + 8x + 6$$

a
$$2x^2 + 8x + 6$$
 b $2x^2 + 14x + 20$

c
$$2x^2-12x+10$$
 d $3x^2-9x+6$

d
$$3x^2 - 9x + 6$$

$$e 2x^2 + 8x - 24$$

e
$$2x^2 + 8x - 24$$
 f $3x^2 + 21x - 24$

$$f 3x^2 + 21x - 24$$

- D) Quadratic Trinomials (a \neq 1)
 - □ X-Factor, then Grouping
 - 4 Factorize:

a
$$2x^2 + 5x + 2$$

a
$$2x^2 + 5x + 2$$
 b $2x^2 + 13x + 20$

c
$$2x^2 - 11x + 12$$
 d $3x^2 - 8x - 3$

d
$$3x^2 - 8x - 3$$

e
$$5x^2 - 12x + 4$$
 f $7x^2 + 38x - 24$

$$f 7x^2 + 38x - 24$$

g
$$6x^2 + 31x + 5$$
 h $6x^2 - 17x + 5$

h
$$6x^2 - 17x + 5$$

Need More Practice?

Always begin by factoring out a GCF (if possible).

Then check: Is it a difference of squares? Is it a perfect square trinomial? If not, then use X-Factor (with or without Grouping).

a
$$3a^2 + 6a + 3$$

b
$$4b^2 + 2b$$

c
$$5c^2 - 10c - 75$$

d
$$6d^2 - 3d$$

$$e 4e^2 + 20e - 144$$

e
$$4e^2 + 20e - 144$$
 f $3f^2 - 24f + 45$

Fully factorize each expression.

a
$$x^2 - 25$$

b
$$x^2 - 121$$

c
$$4x^2 - 9$$

d
$$x^2 - y^2$$

e
$$9x^2 - 1$$

f
$$x^4 - 1$$

9
$$16x^2 - 169$$

h
$$81x^2 - 9$$

$$125u^2 - 16v^2$$

$$16-49x^2$$

k
$$16 - x^4$$

$$11 - 81y^4$$

6 Factorize:

a
$$a^2 - 5a - 36$$
 b $16b^2 - 9$

$$16h^2 - 9$$

$$c c^2 + 11c + 24$$

c
$$c^2 + 11c + 24$$
 d $4d^2 - 17d - 15$

e
$$4e^2 - 3e$$

f
$$f^2 + 2f - 48$$

a
$$3a^2 - 23a + 14$$
 b $16h^2$ 1

f
$$f^2 + 2f - 48$$

Factorize each quadratic.

a
$$5x^2 - 9x + 4$$

b
$$6x^2 + 7x + 2$$

a
$$5x^2 - 9x + 4$$
 b $6x^2 + 7x + 2$ **c** $4x^2 + 8x + 3$

d
$$6x^2 - 11x + 4$$

d
$$6x^2 - 11x + 4$$
 e $8x^2 - 14x - 15$

$$\mathbf{f} \quad 12x^2 - 17x + 6$$

 $1.21x^2 - 22x + 6$

g
$$6x^2 + 5x + 1$$
 h $6x^2 + x - 2$

h
$$6x^2 + x - 2$$

i
$$6x^2 - 5x - 1$$