
Author: Kirill Kozlov 
Status: Implemented 
Last updated: 12/02/2019 

Objective 
Propose an interface for Beam SQL IO APIs to support predicate and/or project push-down 
functionality for queries. 

Background 
Users want more efficient (in terms of network bandwidth and compute resources) SQL 

pipelines when using IO sources with support for filter and/or project push-down, which are not 
currently being leveraged in Beam SQL. 

Detailed Design 
We should introduce an interface responsible for determining whether a filter push-down 

is supported, and if so, return any expressions that are not supported to be preserved. Since 
core IO APIs support this feature via vastly different means (ex: BigQuery uses a SQL String, 
MongoDB - own Filter class), an implementation for this interface can transform a calcite 
RexNode condition into any appropriate format used by the API. Calcite RexProgram has a 
condition, which is a local reference to an expression, which has to be met (ex: boolean true) in 
order for the project to happen. 
public interface BeamSqlTableFilter { 

List<RexNode> getNotSupported(); 
int numSupported(); 

} 
Implementation of a BeamSqlTableFilter interface should do all necessary processing of 

the RexNode and transformation to the acceptable data format. A list of expressions in a 
conjunctive normal form will be passed to a constructor. 

Method numSupported should return the number of filters that can be pushed-down, 
used for calculating the benefit of project push-down by the cost model. 

Method getNotSupported should return parts of a condition that are not supported. 
Return a list of RexNode if filter push-down is partially/completely not supported, containing all 
unsupported nodes. Return an empty list if an entire condition can be pushed-down to IO layer. 

Let's say we have an API, which is only capable of performing a predicate push-down for 
expressions comparing a column value to a literal (ex: "where col3>5"). Imagine a scenario, a 
user executes a query looking something like this: "where col3>5 and col1=col2". Our 
hypothetical IO API does not support "col1=col2", but we can still push-down "col3>5". 
#getNotSupported method should return a list with the following condition "col1=col2", to be 
preserved in a Calc.​
 



Several new methods need to be added to BeamSqlTable interface: 
❖​BeamSqlTableFilter constructFilter(List<RexNode> filter) 

➢​ Constructs an appropriate implementation of an interface described above 
➢​ List should contain nodes, AND of which should make up a condition (in CNF)​

 
❖​ProjectSupport supportsProjects() 

➢​ Whether or not API supports simple projects (no nested tables for now) 
➢​ ProjectSupport is an enum with the following options: 

■​ NONE 
■​ WITHOUT_FIELD_REORDERING 
■​ WITH_FIELD_REORDERING​

 
❖​PCollection<Row> buildIOReader(PBegin begin, ​

​ ​ ​ ​ ​     BeamSqlTableFilter filters,​
​ ​ ​ ​ ​     List<String> fieldNames) 
➢​ Build an IO reader with projects and filters pushed-down when applicable 

Changes to the cost model 
​ Main objective to be achieved by modifying the cost model is to ensure that the IO with 
push-down is chosen over the one without. Currently, cost model aims to improve efficiency by 
performing join reordering. The difficulty in modifying the cost model is to ensure that join 
reordering in unaffected. In order to make that happen change to the price of Rel node should 
be very small, no more than BeamCostModel.FACTORY#makeTinyCost. 
​ The benefit of using a pushed-down IO is calculated using the number of fields and the 
number of filters pushed-down. The benefit value is normalized to be between 0.0 and 1.0. 
Then, the normalized value is multiplied by the TinyCost and subtracted from the cost of the 
IO without push-down. 
​ The following formula is used for calculating the benefit: 

 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐵𝑒𝑛𝑒𝑓𝑖𝑡 =  𝑏𝑒𝑛𝑒𝑓𝑖𝑡
𝑚𝑎𝑥(𝑏𝑒𝑛𝑒𝑓𝑖𝑡, 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐼𝑂𝐶𝑜𝑠𝑡) + 1

 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 =  𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝐵𝑒𝑛𝑒𝑓𝑖𝑡 +  𝑓𝑖𝑙𝑡𝑒𝑟𝐵𝑒𝑛𝑒𝑓𝑖𝑡
 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝐵𝑒𝑛𝑒𝑓𝑖𝑡 =  # 𝑜𝑓 𝑓𝑖𝑒𝑙𝑑𝑠 𝑝𝑢𝑠ℎ𝑒𝑑 𝑑𝑜𝑤𝑛

 𝑓𝑖𝑙𝑡𝑒𝑟𝐵𝑒𝑛𝑒𝑓𝑖𝑡 = 𝑠𝑐𝑎𝑙𝑒(# 𝑜𝑓 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 𝑝𝑢𝑠ℎ𝑒𝑑 𝑑𝑜𝑤𝑛) * ((𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝐵𝑒𝑛𝑒𝑓𝑖𝑡 +  1) *  0. 1) 
 𝑠𝑐𝑎𝑙𝑒(𝑥) = 1 −  1

𝑥 + 1
​ Since the benefit of filter push-down is not as significant as the benefit of project 
push-down, the filterBenefit is scaled down to be between 0.0 and 1.0. Then, multiplied by the 
projectBenefit and 0.1, that way filterBenefit will make up at most 10% of the benefit of the 
project push-down. 
​ An alternative approach that has been considered is to utilize a 
Planner#setImportance method to set the importance of the original Calc and 

https://en.wikipedia.org/wiki/Conjunctive_normal_form


BeamIOSourceRel to 0 in hopes to discourage the planner from using them (Rel nodes w/o 
push-down) in further optimization. Such approach showed to be inconsistent, due to Calc 
importance not propagating to physical BeamCalcRel nodes. 

Example 
Adding project push-down support to MongoDbTable would look something like this: 

@Override 

public PCollection<Row> buildIOReader( 

    PBegin begin, BeamSqlTableFilter filters, List<String> fieldNames) { 

  MongoDbIO.Read readBuilder =  

    MongoDbIO.read() 

             .withUri(dbUri) 

             .withDatabase(dbName) 

             .withCollection(dbCollection); 

 

  // Resolve fields needed after push-down. 

  final FieldAccessDescriptor resolved = 

      FieldAccessDescriptor.withFieldNames(fieldNames) 

          .withOrderByFieldInsertionOrder() 

          .resolve(getSchema()); 

 

  final Schema newSchema = SelectHelpers.getOutputSchema(getSchema(), resolved); 

 

  if (!fieldNames.isEmpty()) { 

    // Create a find query with projection. 

    readBuilder.withQueryFn(FindQuery.create().withProjection(fieldNames)); 

  } 

 

  return readBuilder 

    .expand(begin) 

    // Transform MongoDb Documents to Beam rows. 

    .apply(DocumentToRow.withSchema(newSchema)); 

} 

 

@Override 

public ProjectSupport supportsProjects() { 

  // MongoDB supports project push-down with field reordering. 

  return ProjectSupport.WITH_FIELD_REORDERING; 

} 

 
Predicate push-down example for MongoDbTable: PR#10417. 
 

https://github.com/apache/beam/pull/10417


MongoDbTable supports push-down via specifying a list of projects and filters in a FindQuery. 
For BigQuery buildIOReader method would involve calling withSelectedFields and 
withRowRestrictions setters in BigQueryIO#Read builder. 

Alternatives Considered 

Utilizing Flink implementation 
We could also reuse an existing Flink implementation for project and filter push-down. That 
would require transforming Calcite data types to Flink supported types, thus introducing extra 
complexity. 

https://ci.apache.org/projects/flink/flink-docs-stable/dev/table/sourceSinks.html#defining-a-tablesource-with-projection-push-down

	Objective 
	Background 
	Detailed Design 
	Changes to the cost model 
	Example 
	Alternatives Considered 
	Utilizing Flink implementation 


