

Emit unwinding information for improved
debugging of generated code on Win64

Author: paolosev@microsoft.com
Status: Draft​
Tracking bug for current state: v8:3598
Created: 2019-1-10 / Last Updated: 2019-2-15

LGTMs needed
Name Write (not) LGTM in this row

Introduction
Debugging TurboFan-generated code in Windows/x64 is difficult because the V8 x64 backend
does not emit unwind information on Windows and also because it doesn’t emit ABI-compliant
stack frames. This breaks the Windows OS stack unwinder, causing several problems:

-​ Debuggers cannot unwind the stack past V8 dynamically generated frames, so in
WinDbg the ‘k’ command cannot list full call stacks through V8 frames:​

(windbg)> k
 # Child-SP RetAddr Call Site
00 000000f4`96bfd1f0 0000576e`e0495db1 v8!Builtins_MathRandom+0x62
01 000000f4`96bfd1f8 00000675`843c1171 0x0000576e`e0495db1
02 000000f4`96bfd200 00000000`00000018 0x00000675`843c1171
03 000000f4`96bfd208 000000f4`96bfd240 0x18
04 000000f4`96bfd210 000000f4`96bfd218 0x000000f4`96bfd240
05 000000f4`96bfd218 00000675`8439fd09 0x000000f4`96bfd218
06 000000f4`96bfd220 00000000`00000000 0x00000675`8439fd09

-​ Performance tools like Windows Performance Analyzer, which also rely on the OS stack

unwinder to gather CPU usage samples, cannot collect call stack data through V8
frames.

1

mailto:paolosev@microsoft.com
https://bugs.chromium.org/p/v8/issues/detail?id=3598
https://bugs.chromium.org/p/v8/issues/detail?id=3598
https://bugs.chromium.org/p/v8/issues/detail?id=3598
https://docs.microsoft.com/en-us/windows/desktop/api/winnt/nf-winnt-rtlvirtualunwind
https://docs.microsoft.com/en-us/windows-hardware/test/wpt/windows-performance-analyzer

-​ Win64 SEH (structured exception handling) aborts in the presence of an exception and
does not call the unhandled exception handler. This issue has been fixed by installing in
Crashpad and Breakpad a custom unwind callback for the entire code range of
generated code, which however is not effective for embedded code.

This document describes how unwind information could be emitted to enable the Windows stack
walker to work correctly with V8-generated code, both for code dynamically jitted at runtime and
for CSA/Torque builtins code that is precompiled and embedded in the v8 binaries (and for
which an effort is ongoing to improve the debugging experience).

This is how V8 stack frames appear in a call stack, with the correct unwind data:

(windbg)> k
 # Child-SP RetAddr Call Site
00 000000ce`719f6c50 00007ff9`6ef11d9e v8!v8::internal::MathRandom::RefillCache+0x31
01 000000ce`719f6d50 00007ff9`6ed743ce v8!Builtins_MathRandom+0x13e
[E:/src/out/x64DbgCB\..\..\v8\src\math-random.cc @ 36]
02 000000ce`719f6db8 00007ff9`6ed743ce v8!Builtins_InterpreterEntryTrampoline+0x34e
03 000000ce`719f6e18 00007ff9`6ed69fc4 v8!Builtins_InterpreterEntryTrampoline+0x34e
04 000000ce`719f6e80 00007ff9`6ed69b62 v8!Builtins_JSEntryTrampoline+0x64
05 000000ce`719f6ea8 00007ff9`6e03c1d8 v8!Builtins_JSEntry+0xe2
06 000000ce`719f6fc0 00007ff9`6e0399b1 v8!v8::internal::GeneratedCode<v8:...
07 000000ce`719f7060 00007ff9`6e038cf4 v8!v8::internal::`anonymous namespace'::Invoke+0xa51
08 000000ce`719f73f0 00007ff9`6e038a8c v8!v8::internal::`anonymous
namespace'::CallInternal+0x244
09 000000ce`719f7530 00007ff9`6d6ba909 v8!v8::internal::Execution::Call+0xbc
0a 000000ce`719f75e0 00007ff9`698bca9b v8!v8::Script::Run+0x3b9
0b 000000ce`719f7840 00007ff9`697e3822
blink_core!blink::V8ScriptRunner::RunCompiledScript+0x74b​
[...]
4e 000000ce`719ffaf0 00007ff9`f7aaa251 KERNEL32!BaseThreadInitThunk+0x14
4f 000000ce`719ffb20 00000000`00000000 ntdll!RtlUserThreadStart+0x21

And this is an example of a WPA (windows performance analyzer) trace of Chromium, when we
emit unwind data for V8:

2

https://chromium.googlesource.com/v8/v8.git/+/9b32bb22c1e516a4931ac647656bdf07bd7332be
https://docs.google.com/document/d/1WCrsCEiC61tx3Nk39DUhoG64WIjbhuxu0ARRT_HrHsk/edit?invite=CPvWtMsM&ts=5c2ca17b

We see that now the OS can fully unwind the call stack also across V8 frames. Interestingly, the
call stack can also display function names for all embedded built-ins functions, because V8
already decorates the inline assembly code for built-ins with the necessary annotations to
generate the right DWARF/PDB symbol data. However, the jitted frames in the stack won't have
any named symbols associated with them (they appear as “?!?” in WPA), and generating such
symbols is outside the scope of this document.

Stack walking on Win64
On the x64 architecture, Windows stack walking requires that the correct unwind data be
generated and registered for exception handling and debugger support.
Normally this work is done by the compiler and linker, which store unwind data into the .pdata
and .xdata sections of the PE executable. But for dynamically generated code we can register
unwind data at runtime by calling RtlAddGrowableFunctionTable for each function jitted
by V8, passing a RUNTIME_FUNCTION (or PDATA) object, so declared:

struct RUNTIME_FUNCTION {
 DWORD BeginAddress;

3

https://chromium-review.googlesource.com/c/v8/v8/+/1317810
https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64?view=vs-2017
https://docs.microsoft.com/en-us/windows/desktop/api/winnt/nf-winnt-rtladdgrowablefunctiontable
https://docs.microsoft.com/en-us/windows/desktop/api/winnt/ns-winnt-_image_runtime_function_entry

 DWORD EndAddress;
 DWORD UnwindInfoAddress;
};

Here, BeginAddress and EndAddress define the address range of a generated function,
and UnwindInfoAddress points to the unwind data (or XDATA) for that function. Note that
RUNTIME_FUNCTION contains RVAs, 32 bits wide virtual addresses relative to the load address
of the module that contains the code. For dynamically generated code, the load address is the
location of the first instruction in the function.

XDATA is encoded as an UNWIND_INFO struct followed by a sequence of UNWIND_CODEs,
which specify how, given an instruction pointer, the instructions in the prologue of the current
function should be reversed in order to walk from the current to the previous stack frame.

Furthermore, the Windows unwinder expects that the code of a function respects the Win64
calling conventions. A function prologue should be limited to these operations:

-​ saving parameter registers to their shadow space on the stack
-​ pushing nonvolatile registers
-​ moving nonvolatile registers to locations on the stack
-​ decrementing RSP by a constant
-​ establishing a frame pointer in a nonvolatile register other than RSP.\

The epilogue should do the inverse operations of the prologue.
The stack pointer RSP usually does not change between the prologue and the epilogue of a
function, but a frame pointer can be used when it is necessary to allocate additional memory on
the stack in the function (like with _alloca()).

Unwinding V8 non-ABI-standard frames
Currently the stack frames for code generated by V8 do not follow the Win64 calling
conventions and have usually the following prologue and epilogue:

4

https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64?view=vs-2017
https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64?view=vs-2017#struct-unwind_info
https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64?view=vs-2017#struct-unwind_code
https://docs.microsoft.com/en-us/cpp/build/prolog-and-epilog?view=vs-2017
https://docs.microsoft.com/en-us/cpp/build/x64-software-conventions?view=vs-2017
https://docs.microsoft.com/en-us/cpp/build/x64-software-conventions?view=vs-2017

 0x55 push rbp // PROLOGUE
 0x48 0x89, 0xe5 movq rbp,rsp
 … [push registers]
 subq rsp, n

 [...]

 movq rsp,rbp // EPILOGUE
 pop rbp
 ret N

But it turns out that, even if the Win64 ABI is not respected, it is still possible to generate unwind
info that allows the Windows stack walker to correctly unwind those stack frames. The following
XDATA works for every V8-generated function:

typedef union _UNWIND_CODE { // from Windows SDK ehdata.h
 struct {
 unsigned char CodeOffset;
 unsigned char UnwindOp : 4;
 unsigned char OpInfo : 4;
 };
 unsigned short FrameOffset;
} UNWIND_CODE, *PUNWIND_CODE;

typedef struct _UNWIND_INFO { // from Windows SDK ehdata.h
 unsigned char Version : 3;
 unsigned char Flags : 5;
 unsigned char SizeOfProlog;
 unsigned char CountOfCodes;
 unsigned char FrameRegister : 4;
 unsigned char FrameOffset : 4;
 /* UNWIND_CODE UnwindCode[CountOfCodes];​
 * union {​
 * OPTIONAL unsigned long ExceptionHandler;​
 * OPTIONAL unsigned long FunctionEntry;​
 * };​
 * OPTIONAL unsigned long ExceptionData[];​
 */
} UNWIND_INFO, *PUNWIND_INFO;

struct V8_BASE_EXPORT V8UnwindData {

 UNWIND_INFO unwind_info;

 UNWIND_CODE unwind_codes[2];

 V8UnwindData() {

 unwind_info.Version = 1;

5

 unwind_info.Flags = 0;

 unwind_info.SizeOfProlog = 4; // length of ‘push rbp - movq rbp, rsp’

 unwind_info.CountOfCodes = 2;

 unwind_info.FrameRegister = 5; // rbp

 unwind_info.FrameOffset = 0;

 unwind_codes[0].CodeOffset = 4; // IP offset after ‘movq rbp, rsp’

 unwind_codes[0].UnwindOp = UWOP_SET_FPREG;

 unwind_codes[0].OpInfo = 0;

 unwind_codes[1].CodeOffset = 1; // IP offset after ‘push rbp’

 unwind_codes[1].UnwindOp = UWOP_PUSH_NONVOL;

 unwind_codes[1].OpInfo = 5; // rbp

 }

};

struct CodeRangeUnwindingRecord {

 RUNTIME_FUNCTION runtime_function;

 V8UnwindData unwind_info;

 unsigned long exception_handler;

 unsigned long exception_thunk[12];

 void* dynamic_table;

};

How does this work? Given a current thread context and instruction pointer, Win64 stack
unwinder:

1.​ First checks whether the current instruction is in a function epilogue. To do this it looks
for various sequence of instruction, and it recognizes as a valid epilogue the end of a V8
epilogue:​

pop rbp
ret N

Therefore the frame can be correctly unwound when the instruction pointer is in one of
the last two instructions.

2.​ If the current instruction is not in the epilogue, the OS tries to “undo” the instructions that
were executed in the function prologue. Information about the work done by these
instructions is encoded in the array of UNWIND_CODEs which are normally generated by
the compiler and linker. Normally a compiler should emit these XDATA for a V8 prologue:

 push RBP UWOP_PUSH_NONVOL (RBP)
 movq RBP, RSP ​ UWOP_IGNORE

6

https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64?view=vs-2017#unwind-procedure
https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64?view=vs-2017#unwind-procedure

 push RSI UWOP_PUSH_NONVOL (RSI)
 push RDI UWOP_PUSH_NONVOL (RDI)
 sub RSP, n ​ UWOP_ALLOC_SMALL (n)

But we know that this is not standard, so it would not work.

 ​ However, if we generate these two UNWIND_CODEs for the first two instructions in the
prologue:

 UWOP_SET_FPREG (reverted as: RSP = RBP)
 UWOP_PUSH_NONVOL(RBP) (reverted as: RBP = *RSP; RSP += 8)

Then the OS can unwind almost correctly the prologue: it can retrieve the correct values
of RSP, RBP, RIP for the caller frame, for each instruction in and after the prologue.
What it cannot do is to recover the value of non-volatile registers, but this should not
generally be a problem if our goal is only to walk the stack (unless a non-volatile register
happens to be used as frame pointer in one of the non-V8 generated frames in the call
stack).

Interestingly, the unwind info is the same for each function that starts with push RBP, movq
RBP, RSP and does not depend on other details of each particular function, like the function
length.

Registering unwinding information
There are three kinds of dynamically generated code we need to consider:

1.​ Embedded builtins, compiled at snapshot build-time
2.​ Functions dynamically generated at run-time
3.​ WASM code compiled at run-time

Jitted functions
For jitted functions, the src/eh-frame classes, and the x64 UnwindingInfoWriter
classes already know how to gather eh_frame information, and the Code class already
provides an (optional) space for storing unwinding info. We could reuse this area to store both
PDATA (a RUNTIME_FUNCTION object) and the XDATA (a struct equivalent to V8UnwindData
above), writing a Win64 specialization of the UnwindingInfoWriter.

But there is a much simpler possible implementation. Chromium already has code that registers
PDATA/XDATA not for stack unwinding but for exception handling, in order to solve the issue
with Win64 SEH mentioned above. Class gin::IsolateHolder allows embedders to
register callbacks to be notified when a memory code-range is allocated or deallocated and
CrashPad (src\components\crash\content\app\crashpad_win.cc) registers a callback that calls

7

https://chromium.googlesource.com/v8/v8.git/+/9b32bb22c1e516a4931ac647656bdf07bd7332be

RtlAddFunctionTable to register a single RUNTIME_FUNCTION object that spans the
whole code-range and whose UNWIND_INFO only contains exception-handling data. The
function Isolate::GetCodeRange() was added for this reason to the v8.h and the
RUNTIME_FUNCTION and UNWIND_INFO objects are allocated in the first page of the code
range, which for this reason is reserved and marked as writeable.
Here we can leverage the fact that the stack unwinding data is the same for every function jitted
in this code range, and so we can reuse this single PDATA/XDATA entry even for stack
unwinding and not only for exception handling. This is the equivalent of telling the Windows
kernel that there is a single huge jitted function and that the stack unwinding for any instruction
in this address space is determined by the same unwinding codes. Note that
RtlAddGrowableFunctionTable should be used in place of RtlAddFunctionTable to
register PDATA that also contains unwind info; but RtlAddGrowableFunctionTable is only
available in Windows 8 and above, and so it is not possible to make stack unwinding work on
Windows 7.

It could be possible to make these changes directly in CrashPad, modifying the UNWIND_INFO
class declared in crashpad_win.cc, to also pass the UNWIND_CODEs described early. But that
would mean that potentially every V8 embedder should be modified to enable stack unwinding
on Win64, and, what’s worse, to do so embedders would depend on the knowledge of internal
implementation details of V8, such as the format of stack frames.

A better solution is to add the logic to emit unwind info inside V8. We should register the PDATA
after a code range has been allocated for an Isolate (in Isolate::Init) and unregister it
when an Isolate is being deleted. And since multiple PDATA entries should not be registered for
the same address range, we need to make a small change to class gin::IsolateHolder to
check whether unwind info is already being registered by V8. For this reason we add a new
function to the V8 API (v8.h):​
​
bool Isolate::ShouldInstallFunctionTableCallbacksForStackUnwinding()

which should be used by any embedder that calls Isolate::GetCodeRange() to generate
unwind info for an Isolate code range.

But what happens to the Crashpad exception handler then? To be sure that the Crashpad
exception handler will also be called when an exception happens in some V8 code with a stack
that for some reason cannot be completely unwound, we can add another (Windows-specific?)
function to the V8 API:

typedef int (*UnhandledExceptionCallback)(
 _EXCEPTION_POINTERS* exception_pointers);
void SetUnhandledExceptionCallback(
 UnhandledExceptionCallback unhandled_exception_callback);

that embedders can call to pass an exception handler for all V8-generated (or embedded) code.

8

We rely on the fact that an UNWIND_INFO, after the sequence of UNWIND_CODEs, can also
optionally specify the RVA of an exception handler that will be called every time an exception
happens in that code region, as described in the struct CodeRangeUnwindingRecord above.

The only disadvantage of registering a single RUNTIME_FUNCTION entry to cover all the
functions inside a whole isolate code-range is that it is a bit of a cheat and stack walking
becomes slightly imprecise. More precisely, we have a small problem when a stack walk
happens when the instruction pointer is exactly at the beginning of a prologue. Since
UNWIND_CODEs are associated to a CodeOffset calculated from the beginning of the
function, and the logic in OS stack walker ignores UNWIND_CODEs for prologue instructions that
have not been executed, if we have a V8 prologue like:

 Offset Instruction Unwind code Reverted as:​
 0x00 push rbp UWOP_SET_FPREG RSP = RBP​
 0x01 mov rbp, esp UWOP_PUSH_NONVOL(RBP) RBP = *RSP; RSP += 8​
 0x04 {rest of the function}

and RIP points to one the first two instructions, what happens while unwinding is that these two
UNWIND_CODEs will not be ignored, and since RBP still points to the previous frame, then the
previous frame gets skipped in the stack walk.

There can be also problems with off-heap trampolines, when calling an embedded builtin: if the
caller frame doesn’t use RBP as frame pointer and the instruction pointer happens to be in one
of the two instructions of an off-heap trampoline (mov r10, target - jmp r10), then the
stack cannot be unwound.

There is no problem, instead, when stack walking happens in a function epilogue because
epilogue unwinding does not use the registered UNWIND_CODEs.

WASM

In Chromium, class gin::IsolateHolder calls the
RegisterNonABICompliantCodeRange callback only for the Isolate code range for jitted
code (that is returned by v8::Isolate::GetCodeRange()). This is not where WASM code
gets compiled; for every WASM module, a 1GB code range gets allocated in
WasmCodeManager::NewNativeModule().

To be able to stack-walk wasm-compiled frames, we need to register PDATA/XDATA also for
WASM code ranges. Analogously to the case of Isolates, the first page of a WASM executable
space on Win64 needs to be reserved and temporarily marked as writeable, to contain the
RUNTIME_FUNCTION and UNWIND_INFO objects we use to register this code range. Then,
analogously to what we do in class Isolate::Init, we can modify
WasmCodeManager::NewNativeModule to register the PDATA for this code range after a

9

new WASM module has been created, and WasmCodeManager::FreeNativeModule to
unregister it while the module is being deleted.

Embedded builtins
Stack unwinding is more complicated for builtin code. Unfortunately, not all builtins start with the
push RBP, movq RBP, RSP sequence; this is currently true for 641 builtins, and we can
assume that this will be true only for the TFJ builtins (with JavaScript linkage), but it is generally
not true for other kind of builtins, especially the ASM builtins directly written in
platform-dependent assembly.

We cannot make many assumption on the code generated for builtins. There are builtins, like
CallVarargs, which don’t even allocate a stack frame, and just end with a jump.
In many builtins (like ArgumentsAdaptorTrampoline below) there is a non-standard
prologue, with code that checks the validity of status and arguments, dispatches the execution
or calls Abort() in case of errors. There are then usually one or more push RBP; movq
RBP, RSP sequences that create a stack frame before calling other functions. Finally there is a
movq rsp,rbp; pop rbp sequence to close the frame, followed by a non-standard
epilogue, with code that ends up returning to the caller or jumping to some other function:.
There is even at least one builtin, StringEqual, which generates an RBP frame but where the
‘movq rsp,rbp; pop rbp’ sequence precedes the ‘push RBP; movq RBP, RSP’ in
the code.

All this code is clearly too “un-standard” for the Windows stack unwinder. In other words, there is
no way to generate a set of UNWIND_CODEs that faithfully track the behaviour of these
functions. For this reason, even though the Clang GAS assembler supports the generation of
pdata/xdata for stack unwinding through .seh directives, this cannot be a viable option..

However, it turns out that the simple V8UnwindData XDATA described before still works in
almost all cases if we follow this rules:

-​ Given the code of a builtin function that contains n sequences ‘push RBP; movq
RBP, RSP’, generate (n+1) PDATA entries.

-​ The first entry covers the instructions from the beginning of the function, to the
first ‘push RBP; movq...’ excluded.

-​ The second entry covers the instructions from the first ‘push RBP’, to the next
‘push RBP’, if present.

-​ And so on, with a final entry that covers code from the last ‘push RBP’ to the
end of the function.

-​ All these PDATA entries refer to the same V8UnwindData described early.
-​ For functions that don’t have any ‘push RBP’ generates a single PDATA entry that

covers the whole function.

10

https://chromium.googlesource.com/chromiumos/third_party/gdb/+/727b34e74fe59c7b70b24ca2ae94b47a2db5a1b3/gas/config/obj-coff-seh.h

kind = BUILTIN
name = ArgumentsAdaptorTrampoline
...
Instructions (size = 295)
000001A3916B3960 0 4881fbffff0000 cmpq rbx,0xffff
000001A3916B3967 7 0f84e7000000 jz 000001A3916B3A54 (ArgumentsAdaptorTrampoline)
000001A3916B396D d 483bc3 cmpq rax,rbx
000001A3916B3970 10 0f8c4b000000 jl 000001A3916B39C1 (ArgumentsAdaptorTrampoline)
000001A3916B3976 16 55 push rbp
000001A3916B3977 17 4889e5 movq rbp,rsp
...
000001A3916B39C1 61 55 push rbp
000001A3916B39C2 62 4889e5 movq rbp,rsp
...
000001A3916B3A44 e4 488be5 movq rsp,rbp
000001A3916B3A47 e7 5d pop rbp
...
000001A3916B3A53 f3 c3 retl​
000001A3916B3A54 f4 488b4f2f movq rcx,[rdi+0x2f]
...
000001A3916B3A6E 10e 498b8ccd602f0000 movq rcx,[r13+rcx*8+0x2f60]
000001A3916B3A76 116 ffe1 jmp rcx
…
000001A3916B3A86 126 cc int3l

For example, for the builtin ArgumentsAdaptorTrampoline above we would emit three
PDATA entries, all pointing to the same UNWIND_INFO:

1.​RUNTIME_FUNCTION (offset 0x00 to 0x15)
2.​RUNTIME_FUNCTION (offset 0x16 to 0x60)
3.​RUNTIME_FUNCTION (offset 0x61 to 0x126)

We need to modify the x64 Assembler class (src/x64/assembler-x64.h) to keep track of the
generation of ‘push RBP; movq RBP, RSP‘ when the assembler is used for the code
generation of builtins. We need to pass this information to the EmbeddedFileWriter that
writes the embedded.cc file that will also contain directives for the .pdata/.xdata sections, as
we’ll see later.

How does this work?

●​ When we are inside a ‘push rbp … pop rbp’ region the XDATA states that the
current frame can be unwound reverting the movq RBP, RSP and then push RBP
instructions, and this works because RBP actually points to the location in the stack that
contains the previous RBP frame pointer, allowing the OS unwinder to find the caller
frame.

●​ When we are outside a ‘push rbp … pop rbp’ region, the OS unwinder will still try to
find the previous frame pointer getting RSP from RBP. In some cases this might fail,
because the register RBP is being used for some other purposes. But this is very likely
to happen only when the builtin function is at the top of the call stack, not when it is in

11

the middle, because builtins almost always seem to create an RBP stack frame before
calling other functions.

Early tests indicate that this solution works surprisingly well; WPR traces of Chromium show that
the stack cannot be completely unwound only for 0.1-0.2% of the samples that contain V8
functions (they appear in WPA as stack frames that start with an unknown “?!?” V8 frame as
topmost function).
It should be noted finally that the unwinding a function with the “wrong” unwind codes is not a
dangerous operation: the Windows OS unwinder can also run in kernel mode and it’s very
robust having to assume that the status of each registry can be corrupted or invalid at any time.

Unwind data generation

●​ Usually the linker generates right PDATA for all functions it links into an executable,
according to the function prologue code, and stores them into the “.pdata” section of the
executable. In practice, this is a sequence of RUNTIME_FUNCTION objects, sorted by
BeginAddress. But in our case embedded.cc does not contain code to compile but
only assembly binaries; consequently, no PDATA are generated for builtin code. In fact,
the .pdata section (dumped with dumpbin.exe /PDATA) shows a big gap that
corresponds to that region in the executable:

 001C041C 018973E0 018973F9 0243C560 ??1?$_Vector_alloc@U?$_Vec_...
 001C0428 01897400 0189749B 0243C568 ?_Free_proxy@?$_Vector_alloc@U?$_Vec_base...
 001C0434 018974A0 018976A4 0243C570 ?SetSnapshotFromFile@internal@v8@@YAXP...
 001C044C 01D63080 01D63130 0243C580 ?RoundUpToPowerOfTwo32@bits@base@v8...
 001C0458 01D63130 01D631F5 0243C588 ?RoundUpToPowerOfTwo64@bits@base@v8...

To fix this issue we just need to add the right assembly directives into embedded.cc to register
a RUNTIME_FUNCTION entry for each built-in function:

 // pdata for all the code in the embedded blob.
 .section .pdata
 .rva v8_Default_embedded_blob_data_ + .BeginAddressBuiltin_0
 .rva v8_Default_embedded_blob_data_ + .EndAddressBuiltin_0
 .rva Builtins_UnwindInfo
 .rva v8_Default_embedded_blob_data_ + .BeginAddressBuiltin_1
 .rva v8_Default_embedded_blob_data_ + .EndAddressBuiltin_1
 .rva Builtins_UnwindInfo
 [...]
 .rva v8_Default_embedded_blob_data_ + .BeginAddressBuiltin_N-1
 .rva v8_Default_embedded_blob_data_ + .EndAddressBuiltin_N-1
 .rva Builtins_UnwindInfo​

In the same file, we need to emit a single UNWIND_INFO entry, since the XDATA is the same
for each built-in function:

12

 // xdata for all the code in the embedded blob.
 .section .xdata
 Builtins_UnwindInfo:
 .byte 0x1,0x4,0x2,0x5,0x4,0x3,0x1,0x50

Implementation

The following CLs contains the changes required to emit unwind info for V8 code in Win64:
-​ (Chromium) - Enable Win64 stack walking for jitted frames
-​ (V8) - Enable Win64 stack walking

Conclusions
This solution has several advantages:

-​ It is very simple; we don’t have to deal with code motion (due to GC) or code deletion.
-​ It causes no impact in V8 runtime performances.
-​ It requires minimal or no changes in the embedders.​

13

https://chromium-review.googlesource.com/c/chromium/src/+/1423737
https://chromium-review.googlesource.com/c/v8/v8/+/1422761

The only disadvantage is that there can be a small imprecision in the data collected by
performance tools:

-​ Since we register a single RUNTIME_FUNCTION to cover the whole code region of an
Isolate or a WASM, stack walking can be imprecise when the instruction pointer is
exactly at the beginning of the prologue or in an off-heap trampoline.

-​ Since builtins functions do not follow the x64 Windows ABI, stack walking can fail in a
few (statistically infrequent) cases.

This seems like a reasonable price to pay for a very simple implementation.

14

	Emit unwinding information for improved debugging of generated code on Win64
	LGTMs needed
	Introduction
	Stack walking on Win64
	Unwinding V8 non-ABI-standard frames
	Registering unwinding information
	Jitted functions
	WASM
	Embedded builtins
	Unwind data generation

	Implementation

	Conclusions

