Embedding WebVTT In WebM

2012-01-25
by: Matthew Heaney and Erank Galligan

Objective

The purpose of this document is to specify a mechanism for embedding WebVTT in
a WebM file.

Background

WebVTT is a standard for subtitles, captions, and related metadata. A web video
text track comprises a set of cues, each of which has a timestamp, settings, and the
actual payload text. The cues are listed in a dedicated WebVTT file (having the .vtt
file extension by convention) that is associated with a web video using the src and
kind attributes of the HTML5 track element.

WebM is a media standard for web video. Its container format is based on
Matroska and there are separate tracks for video and audio. There is interest in
embedding the contents of a WebVTT file inside a WebM file, so that the video text
track does not have to be carried out-of-band, separate from the video itself.

Design Ideas

Our goal is to embed the contents of a WebVTT file in a WebM file, that preserves
the information from each cue, and without too much disruption to the container
standard.

A WebVTT cue is a set of lines comprising an identifier, a timestamp and optional
settings, followed by the payload. The payload is the text of the subtitle or caption,
chapter title, or metadata.

This format is actually very similar to the SubRip file format [SRT]. Matroska
already supports embedded SRT subtitles as a track (see [MKVSRT]), by embedding
just the SRT payload as the data portion of a block. However, this approach might
not be suitable for WebVTT because:

e Timestamps are (optionally) annotated with additional settings, such as the
position and orientation of the text.

e The cue identifier is optional, but it contains potentially useful information (it
does not have to be merely number text, as is the case for SRT), so it would


mailto:matthewjheaney@google.com
mailto:fgalligan@google.com

need to be stored somehow. (The cue identifier in SRT is required.)

The contents of the WebVTT file would be stored as its own WebM track. The
information that would appear as attributes of the HTML5 track tag can be
embedded in WebM Track element as follows:

e The TrackType sub-element value is 0x11 (generic “subtitle” track type).
e The label attribute is stored as the Name sub-element.
e The srclang attribute is stored as the Language sub-element.

Per the convention (see [MKVCODECID]) used for flavors of a particular video or
audio codec, the CodecID for a WebVTT track is “"S_TEXT/VTT/kind"”, where kind is
one of CAPTIONS, SUBTITLES, DESCRIPTIONS, CHAPTERS, or METADATA.

There are two places where WebVTT file content can be stored. The first place is in
the CodecPrivate element of the track. This is useful for situations that require all of
cues to be together and immediately available, such as for chapter cues (used to
navigate to a particular section of the media). This storage location could also be
used for the file-wide metadata that precedes the actual WebVTT cues.

If a muxer chooses to embed WebVTT content in the CodecPrivate area of the Track
header, then it should also include the "WEBVTT” keyword.

The second place to store WebVTT cues would be in the track proper. The simplest
way to represent WebVTT in the stream is to store the entire cue (not just the
payload part) as the data portion of a Block element. The Block would need to be
part of a BlockGroup element (not a SimpleBlock) in order to use a BlockDuration
element, which is necessary to fully specify the original timestamp of the cue. This
is different from how SRT is handled, because the the header lines of a WebVTT cue
carry essential information.

The advantage of this approach (simply embedding the entire cue as the data
portion of a block) is that it simplifies muxing of a WebVTT file. When writing the
file, the muxer does not have to do anything special except parse the timestamp of
the cue (in order to synthesize the block time and block duration). A symmetric
benefit applies to the WebM reader, which only needs to read the block, and then
feed its contents in toto to the WebVTT parser.

The disadvantage is that the WebVTT timestamp text is duplicated as the value of
the timestamp part of the Block Group element (the start time) and the Duration
element (whose value is synthesized from the start and stop times). The
timestamp is small compared to the total cue size, so perhaps this does not matter.



The timestamps for WebVTT cues can overlap in time. This is how roll-up captions
work: multiple cues are rendered simultaneously, and when the top cue expires, the
other cues move up and a new cue appears at the bottom. The WebM block
timestamps must therefore be allowed to be monotonically increasing (a
requirement already needed for the WebM container to support VP8 alt-ref frames),
and the duration for a block must be allowed to overlap the start time of the next
block.

Note that it is not an either-or decision about where to store WebVTT file content.
Some of the content from the WebVTT file can go in the CodecPrivate header of the
WebM, and the remainder can go in the track. In some situations, all of the data
would go in the CodecPrivate (the typical case for chapter-style cues), and in other
cases, all of the data would go in the track (the canonical representation for
non-chapter cues).

Alternatives Considered

SRT-style Embedding of Cue Payload

An alternative is for the muxer to fully parse each WebVTT cue, embed the payload
the same as for SRT (the cue payload only as the data part of the Block element),
and use the BlockAdditions element to store the cue identifier and cue settings. In
this case, there would be no need to store the WebVTT timestamp text except in its
translated form, as the values of the Block timestamp and BlockDuration element.

The advantage of this approach is that the information associated with a cue would
already be in binary form, so in principle this would make it simpler for parsers or
other downstream clients that must also parse the WebVTT cues. (But then again,
they might also use the text as is, so perhaps this is not much of an advantage.)
There might be a storage penalty however, because Matroska elements do have a
certain amount of overhead. The disadvantage is that this ties WebM more closely
to WebVTT, since any changes to the WebVTT standard would have to be matched
with concomitant changes to the WebM standard; blob-style embedding avoids this.

Storage Optimized Representation

If the duplication of the timestamp in both the block payload (in raw, text form) and
block timestamp fields (in binary form) is an issue, one possibility is to strip out the
actual timestamp from the cue text during the mux phase, and then synthesize it
back in during the demux phase. This is possible because the conversion in either
direction is lossless.

The advantage is that the original WebVTT cue could be stored more compactly in



the WebM stream. However, this does complicate muxing and demuxing, for not
much benefit, because the actual timestamp is a relatively small portion of the
overall cue. The muxer must do some nominal parsing anyway to determine
timestamp values, so it's not that much extra work to strip out the timestamp when
writing the cue. The problem is much more severe for the demuxer, though, since
it must actually parse the cue, and then reconstitute the timestamp line from the
information in the block; none of this is necessary using the canonical
representation.

Chapters

Chapter cues are used for navigation (they are used as a kind of index), so they
should probably be co-located, hence our decision to use the CodecPrivate region to
store (chapter) cues. But there are other places where chapter cues could be
stored, such as in the track itself, or in different level-1 elements altogether.

Chapter cues are formatted the same as other cues, but there are relatively few of
them, because they are used for navigation across (relatively) large spans of time.
In Matroska, block timestamps must be monotonically increasing across tracks, so
it is not possible to simply put all chapter cues together in the file (as timestamped
blocks) without violating the container standard.

One possibility is to create a special WebM element similar to a Cues element in
Matroska (its version of a keyframe index), where the chapter cues can all go
together. A similar approach would be to embed all of the chapter cues in a single
block, say at the beginning of the track; this will also work for live chapters.

Yet another possibility is to simply convert the chapter cues into Matroska chapter
elements (see [MKVCHAP]) and embed them that way. The issues with this
approach include: not treating all streams identically, having to convert between
WebVTT and Matroska formats, tying WebM too closely to future changes to the
WebVTT specification, and not supporting timestamped chapter cues for live
streams.

Outstanding Issues

File-Wide Metadata

It has been proposed that file-wide metadata (see [DEV] or [CHANGE]) be stored at
the top of the WebVTT file, and formatted as UNIX-style name-value pairs:

WEBVTT
Language=zh



Kind=Caption
Version=V1 ABC
License=CC-BY-SA

1
00:00:15.000 ==> 00:00:17.950
first cue

File-wide metadata does not have a timestamp, so all the text (up to and excluding
the linefeed separator that demarcates the file-wide metadata and the first cue)
could be stored in the CodecPrivate sub-element of the Track element.

We have made the (tentative) decision that the CodecPrivate region can be used to
store some portion of the original WebVTT file, so that scheme will accommodate
file-wide metadata already.

A metadata cue [META] is the same as other WebVTT cues, with the difference that
the text has no particular interpretation, except as generic text.

Default Cue Settings

The cue settings are attached to the timestamp line, and it has been suggested
(see [DEV] or [CHANGE]) that the syntax be modified to allow for default cue
settings to be specified. The timestamp line retains the distinguished arrow symbol
(“-->"), but the actual timestamps are omitted:

WEBVTT
DEFAULTS --> D:vertical A:end

00:00.000 --> 00:02.000
This is vertical and end-aligned.

Block elements must have a timestamp value, so it’s not clear how this cue should
be embedded in the WebM stream. One idea is to use the start time of following
cue, and embed the cue as a Block either within a BlockGroup that omits the
BlockDuration element, or simply use a SimpleBlock element instead (possible here
because no BlockDuration need be present).

Another idea is to embed both the default settings cue in the same block as the
following (normal) cue. This might complicate the demuxer, though, since there is

no longer a one-to-one correspondence between a WebVTT cue and a WebM block.

Inline CSS and Comments could be handled similarly.



The presence of default cue settings implies that the state of subtitle rendering
system depends on everything that has come before (at least, what default cue
settings have come before). One problem is that seeking into the middle of the
stream will break the rendering, because the seek will skip over cues that
potentially specify new default settings.

Assuming that seeking is desired, there are at least a couple of ways to handle this.
One way is to simply not write any default settings cues into the WebM track.
Instead, write the settings explicitly, in the normal way, on the same line as the
timestamp. If a cue overrides the default, then that value would be preserved;
otherwise, write the current default value.

Another way is to write a default settings cue that is the union of all current
defaults, whenever you write a block that is the target of a WebM Cue (typically a
video keyframe). A muxer will have to make similar arrangements anyway, to
ensure that the WebVTT cues associated with a video frame are placed on the same
cluster as the frame itself (similar to the same rule we have for audio).

In both cases, the muxer will have to a be WebVTT interpreter too, since each cue
will need to be parsed to determine whether it specifies a default settings cue, and
then actual default settings will need to be parsed.

Yet another possibility is that the default settings cues could be embedded
separately, in a different part of the file, say in the CodecPrivate area. During the
demuxing phase, the original stream of cues could be reconstituted from the set of
settings cues and the normal cues. This still means more work for the muxer,
however, because it must parse enough of the cue to determine what kind of cue it
is, and then parse the settings too. (No matter what, the muxer will need to parse
the timestamp of the cue, in order to synthesize the timestamp of the block, so
perhaps the extra parsing is not too much of a greater burden.)

Metadata Format

WebVTT has explicit support for a metadata track, but it’s not clear exactly what
WebVTT metadata looks like. Is it name/value pairs? In any event, WebM will
probably have to standardize a few of the names, no matter how it is formatted.

There might also be interest in supporting XMP (see [XMP1CORE] and
[XMP2PROP]), RDF (see for example [RDF]), JSON, or some other stylized form of
metadata the payload of a metadata cue. For example, it might be possible to
embed, say, the GPS coordinates of the video track using XMP as follows:



00:42:00 -> 00:42:00
<x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 5.1.2">
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about=""
xmlns:exif="http://ns.adobe.com/exif/1.0/">
<exif:GPSLatitude>73/1,45/1,2272/100</exif:GPSLatitude>
<exif:GPSLongitude>42/1,50/1,5427/100</exif:GPSLongitude>
<exif:GPSLatitudeRef>W</exif:GPSLatitudeRef>
<exif:GPSLongitudeRef>N</exif:GPSLongitudeRef>
</rdf:Description>
</rdf:RDF>

</x:xmpmeta>

(In this example, it's not clear whether the markup needs to escaped using the
standard ampersand sequence.)

References

[WEBVTT] WebVTT Living Standard (accessed 12 Jan 2012)
http://dev.w3.org/htmlI5/webvtt/

[CHANGE]
http://www.w3.org/WAI/PF/HTML/wiki/Media_WebVTT_Changes

[DEV]
http://blog.gingertech.net/2011/06/27/recent-developments-around-webvtt/

[META]
http: v.w3.ora/html5/webvtt/#webvit-met ta-text

[MKV]
http://matroska.org/technical/specs/index.html

[MKVSRT] SRT Subtitles
http://www.matroska.org/technical titl rt.html

[MKVCODECID] Matroska Codec Specs
http://matroska.org/technical/specs/codecid/index.html

[MKVCHAP]
http://matroska.org/technical/specs/chapters/index.html

[SRT] SubRip
http://en.wikipedia.org/wiki/SubRip

[WEBM]


http://dev.w3.org/html5/webvtt/
http://www.w3.org/WAI/PF/HTML/wiki/Media_WebVTT_Changes
http://blog.gingertech.net/2011/06/27/recent-developments-around-webvtt/
http://dev.w3.org/html5/webvtt/#webvtt-metadata-text
http://matroska.org/technical/specs/index.html
http://www.matroska.org/technical/specs/subtitles/srt.html
http://matroska.org/technical/specs/codecid/index.html
http://matroska.org/technical/specs/chapters/index.html
http://en.wikipedia.org/wiki/SubRip

http://www.webmproject.or ntainer

[XMP1CORE] XMP Specification, Part 1, Data Model, Serialization, and Core
Properties
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/xm

pdfs/XMPSpecificationPartl.pdf

[XMP2PROP] XMP Specification, Part 2, Additional Properties
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/xm
fs/XMP. ificationPart2.pdf

[RDF] Embedding RDF in WebVTT
http://ninsuna.elis.ugent.be/node/39



http://www.webmproject.org/code/specs/container/
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart1.pdf
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart2.pdf
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart2.pdf
http://ninsuna.elis.ugent.be/node/39

	Embedding WebVTT In WebM 
	Objective 
	Background 
	Design Ideas 
	Alternatives Considered 
	Outstanding Issues 
	References 


