
APS Homework 3: Sorting 
 
Problem 1: Target Sum 
 
​ You are given a list of  real numbers along with a target number x. You want to 𝑛
determine whether there exist 2 distinct elements in your list that sum to x. A naive 
approach would be to check every possible pair of elements to see if they sum to x, but we 
can do better. 
 
Problem 1a: In Big-O notation, what is the worst-case time complexity of the naive 
algorithm, in which you check every possible pair of elements in the list? 
 
Problem 1b: If you were to first sort the list, you can design a more efficient algorithm. 
Describe an algorithm that, given a sorted list, can find a pair of elements that sum to x 
more efficiently than the naive algorithm. 
 
Problem 1c: In Big-O notation, what is the worst-case time complexity of the sorting step 
that must precede your algorithm? What about your algorithm itself (after the list has been 
sorted)? 
 
 
Problem 2: Comparison of Time Complexities 
 
​ For each of the functions f(n) in the table below (i.e., the rows), determine the largest 
problem size n that can be solved in the specified time t (i.e., the columns), assuming the 
algorithm takes exactly f(n) nanoseconds to run. Hint: Instead of computing them by hand, 
it may be faster to write a program to compute them for you. 
 

 1 second 1 minute 1 hour 1 day 1 year 1 century 

log2n       

log10n       

√n       

n       

n2       

n3       

n50       

2n       

n!       



 


