APS Homework 3: Sorting

Problem 1: Target Sum

You are given a list of n real numbers along with a target number x. You want to determine whether there exist 2 distinct elements in your list that sum to x. A naive approach would be to check every possible pair of elements to see if they sum to x, but we can do better.

Problem 1a: In Big-O notation, what is the worst-case time complexity of the naive algorithm, in which you check every possible pair of elements in the list?

Problem 1b: If you were to first sort the list, you can design a more efficient algorithm. Describe an algorithm that, given a sorted list, can find a pair of elements that sum to x more efficiently than the naive algorithm.

Problem 1c: In Big-O notation, what is the worst-case time complexity of the sorting step that must precede your algorithm? What about your algorithm itself (after the list has been sorted)?

<u>Problem 2: Comparison of Time Complexities</u>

For each of the functions f(n) in the table below (i.e., the rows), determine the largest problem size n that can be solved in the specified time t (i.e., the columns), assuming the algorithm takes exactly f(n) nanoseconds to run. Hint: Instead of computing them by hand, it may be faster to write a program to compute them for you.

	1 second	1 minute	1 hour	1 day	1 year	1 century
log₂n						
log ₁₀ n						
√n						
n						
n^2						
n^3						
n ⁵⁰						
2 ⁿ						
n!						