
Idea 1: use a containing treescope

Idea 1: stylesheets in shadow trees are treated as if their scoping node is a
containing treescope, style scoped always wins.

For example,

Since style0’s scoping node is a root node of a treescope containing div#host, style0 and style2
are treated as if they have the same scoping node.

style0 div { border-color: blue; }

style1 div { border-color: lime; }

style2 div#host { border-color: red; }

TreePosition TreeInnerPosition



div { border-color: blue; } 0 1

div { border-color: lime; } 1 ignore

div#host { border-color: red; } 0 0

getComputedStyle(‘div#host’).borderColor should be lime.

Idea 2: use a scoping node of style scoped if found

Idea 2: stylesheets in shadow trees are treated as if their scoping node is the
same as the style scoped's scoping node. The scoping node is the first one when
walking up from the shadow host.

For example,



When walking up from div#host, we find a scoping node of style1 before a scoping node of
style0.
So we treat style2 as if its scoping node is the same as style1’s.

style0 div { border-color: blue; }

style1 div { border-color: green; }

style2 div#host { border-color: red; }

TreePosition TreeInnerPosition

div { border-color: blue; } 0 ignore

div { border-color: lime; } 1 1

div#host { border-color: red; } 1 0

Since CSS cascade order is (1) TreePosition, (2) specificity and (3) TreeInnerPosition + order of
appearance,

getComputedStyle(‘div#host’).borderColor should be red.


