
SPDX 2.3 to SPDX 3.0 Compatibility
Analysis

Purpose and Background
This document is a work in progress description of changes in the SPDX 3.0 spec that will
impact compatibility between SPDX 2.3 and SPDX 3.0 “Documents” (to use the SPDX 2.3
terminology).

As a major version upgrade, the 3.0 spec is allowed to have breaking changes. As the 3.0 spec
will include several new use cases in the security field as well as machine learning and safety,
breaking changes are likely. We will also address some of the deficiencies identified in the 2.3
spec based on usage in the real world. It is also a goal to minimize the changes and reduce the
effort required by existing SPDX uses to convert from the 2.3 version documents to the 3.0
version documents.

This document lays out currently identified differences between the 2.3 spec and the 3.0 spec to
help guide discussions on balancing the goal of minimizing breaking changes with the other
goals for the SPDX 3.0 spec.

Please note that the 3.0 spec is a work in progress and will likely change in response to this
analysis, so it is probably a bit soon to take action in any existing tooling.

The document is organized in the following sections:
● Structural Differences - These are the most significant breaking changes requiring a

change in logic to handle a different model or structure for the information. Each
structural difference will describe the change, describe an approach to translate from 2.3
to 3.0, and provide a rationale for the change.

● Properties removed - Any properties which are longer supported. This section will
include rationale for removing the properties.

● Renamed entities - Any properties, types or classes which have been renamed. In
addition to the old and new names, a rationale for the name change will be included.

This document is based on the following references:
● 3.0 Migration Mapping Spreadsheet
● SPDX 3 Model Diagram
● SPDX 3.0 Model Repository
● SPDX 2.3 RDF Ontology
● SPDX 2.3 Specification
● SPDX 2.3 JSON schema
● SPDX 2.3 Examples

https://docs.google.com/spreadsheets/d/1Xn6-BnDXRV0pLxLuj1-N_UvTGo6AUg4pSmX2UJ7VLbQ/edit#gid=0
https://github.com/spdx/spdx-3-model/blob/main/model.png
https://github.com/spdx/spdx-3-model
https://spdx.org/rdf/terms
https://spdx.github.io/spdx-spec/v2.3/
https://github.com/spdx/spdx-spec/blob/development/v2.3.1/schemas/spdx-schema.json
https://github.com/spdx/spdx-spec/tree/development/v2.3.1/examples


Update History

Date Who Summary of Changes

24 Feb 2023 Gary O’Neall Initial Document

8 May 2023 Several contributors RC1 Draft - updated justifications, many corrections

31 Jan 2024 Gary O’Neall Update for RC2 release

5 April 2024 Gary O’Neall Update for final release

Structural Differences

External Document Reference

Description of Change
The purpose of the SPDX 2.3 structure “ExternalDocumentRef” is now covered by two separate
structures:

- NamespaceMap which maps short identifiers used in serializations to full namespace
URI’s to support terseness in serialization of element identifiers

- ExternalMap which maps an element identifier for an element defined externally to
verification and location information

The externalDocumentRef property on the SpdxDocument has been replaced by import
property and namespace property.

Another change is the SPDX document checksum field has been replaced with a “verifiedUsing”
property on the ElementCollection. The “verifiedUsing” which has 0 or more “IntegrityMethod”
which should be the checksum of the SPDX document.

Translating from 2.3 to 3.0
Each ExternalDocumentRef instance will translate as follows:

- An entry would be created in the Namespace map for the external document namespace
- The value of the DocumentRef-[idstring] would be used for the prefix property in

the NamespaceMap.
- The value of the documentNamespace appended with a “#” would be used for

the namespace in the NamespaceMap.
- An entry would be created in the ExternalMap for the external document ref



- A string identifier consisting of the DocumentRef-[idstring] (the same value as the
prefix in the NamespaceMap) concatenated with a “:” and then concatenated with
“SPDXRef-DOCUMENT” would be used for the externalSpdxId in the
ExternalMap.

- An integrity method of “Hash” will be created with the same information as the
checksum property and will be referenced using the “verifiedUsing” property on
the ExternalMap entry.

- An entry would be created in the ExternalMap for each element referenced in the current
SpdxDocument that is originally specified in the referenced SpdxDocument.

- A string identifier consisting of the DocumentRef-[idstring] (the same value as the
prefix in the NamespaceMap) concatenated with a “:” and then concatenated with
the local portion of the element identifier would be used for the externalSpdxId in
the ExternalMap

- A “definingDocument” property would be specified containing a string identifier
consisting of the DocumentRef-[idstring] concatenated with a “:” and then
concatenated with “SPDXRef-DOCUMENT”. This is a shortcut linkage to tie the
referenced element to its defining SpdxDocument for verification and location
information.

Rationale
A key difference between SPDX 2.3 and SPDX 3.0 is that in SPDX 2.3 elements are always
expressed within or referenced in relation to a single enclosing SpdxDocument while in SPDX
3.0 a key design principle is that all elements may be expressed and referenced independent of
any other element including SpdxDocument. This independence is required to support a variety
of content exchange and analysis use cases.

For example, in SPDX 2.3 if you wish to express even a single package you specify it within an
SpdxDocument and its identifier namespace is restricted to the namespace of the
SpdxDocument. In SPDX 3.0 you could specify a single package within an SpdxDocument
element (or any other subclass of ElementCollection such as Bundle, Bom, Sbom, etc.) but you
could also simply specify it on its own without any enclosing collection element. In addition, in
SPDX 3.0 the identifier of the package may share a namespace with an enclosing collection
element such as SpdxDocument if desired but it is equally valid for it to have any namespace
desired unconstrained by any other element namespace whether it is expressed within a
collection element such as SpdxDocument or not.

In this example, in SPDX 2.3 if you referenced the package within the same SpdxDocument that
it is defined in you would utilize the local portion of its identifier and presume that the
namespace is the same as the SpdxDocument namespace. If you referenced it from an
SpdxDocument other than the one it is defined in you would use an ExternalDocumentRef to
specify a prefix name for the other SpdxDocument to be used within the current SpdxDocument,
the URI namespace/identifier for the other SpdxDocument, and a checksum for the other
SpdxDocument. To reference the package you would then use an identifier combining the
external document ref prefix and the local portion of the identifier.



The ExternalDocumentRef structure in SPDX 2.3 is based on the presumptions that elements
are always defined within SpdxDocuments, that external elements can always be referenced via
a containing SpdxDocument and that element identifiers have a namespace from their original
containing SpdxDocument. None of these three presumptions hold true for SPDX 3.0 so a
slightly modified structure is necessary to support the two use cases previously covered by
ExternalDocumentRef in SPDX 2.3: 1) the ability to specify identifier namespace prefixes and
accompanying namespaces for SPDX elements to support more terse serialized expression of
content with integrity across serialization forms, 2) the ability to specify which elements in the
current subclass of ElementCollection (e.g., SpdxDocument) are only referenced from that
collection and defined elsewhere, along with details regarding their verification and location.

The Namespace map structure in SPDX 3.0 fully supports the namespace prefixing use case for
SpdxDocuments previously covered by ExternalDocumentRef but also equally covers the same
use case capability for all element types and for any number of element identifier namespaces
(in SPDX 3.0 all elements within an SpdxDocument are not required to have the same
namespace and can actually be any desired mix of namespaces) to support this capability
required in SPDX 3.0.

The ExternalMap structure in SPDX 3.0 fully supports the external element (including
SpdxDocument elements) referencing use case for SpdxDocuments previously covered by
ExternalDocumentRef but also equally covers the same use case capability for any elements
whether they were originally defined within an SpdxDocument or not to support this capability
required in SPDX 3.0. The ExternalMap structure in SPDX 3.0 provides the ability to specify
verification and location details for any element, not just SpdxDocuments, if appropriate but also
provides simple linkage, using the “definingDocument'' property, from element entries in the
ExternalMap to SpdxDocument entries in the ExternalMap where the elements were defined
within the SpdxDocument and verification of the elements can be achieved via proxy to the
SpdxDocument “verifiedUsing” information (this is how the SPDX 2.3 ExternalDocumentRef
structure currently works).

Agent

Description of Change
The creator property in SPDX 2.3 has been replaced by createdBy and createdUsing properties
with a type Agent and Tool resp. The supplier property has been replaced by a property
suppliedBy with a type Agent. Additional suppliers can be provided with a a relationship to an
availableFrom relationship. The originator property type has been replaced with the
originatedBy property with a type Agent.

An Agent can be a Person, Organization, or Software Agent. It can also just be an Agent if it is
not known what specific type an Agent is.



Translating from 2.3 to 3.0
The SPDX 2.3 creator string would be parsed and the appropriate Person, Organization or Tool
would be created depending on if the prefix is “Person: ”, “Organization:” or “Tool: ” resp. The
required createdBy field for Agent or Tool may point to itself if no other information is available.
The createdUsing property would be used for Tool whereas the createdBy property would be
used for Person and Organization. The name would map to the “name” property. If an email
address is present, it would translate to an external identifier.

Note that in 3.0 the createdBy is a required field. There will be situations where only a Tool is
provided. In that case, createdBy should point to a SoftwareAgent should be created using the
same information as the Tool.

Rationale
The 3.0 format is more machine readable and structured (e.g. you do not need to parse the type
from the string value). It is also more flexible in that an Agent can be used even if it is not
known what the Agent type is.

File Type

Description of Change
The FileType enumeration has been replaced by two fields, the media type string as maintained
by IANA for the content of the file and an enumeration of SoftwarePurpose for the purpose of
the file.

The property name fileType has been replaced by a property name contentType.

Translating from 2.3 to 3.0

Rationale
One of the things that we identified is that FileType was being used for two things:

1. Describing the purpose of the file.
2. Describing the type of content in the file.

For SPDX 3.0 we split this into two properties:

● SoftwarePurpose to capture the purpose (which is of type SoftwarePurpose).
● ContentType to capture the type of content (which is of type MediaType).

The name ContentType was chosen to mirror the Content-Type header in HTTP (which is
also of type MediaType) and to express that this is describing the type of content (as opposed to

https://www.iana.org/assignments/media-types/media-types.xhtml


metadata, headers, or something else). For example, if (and not saying we would) we extended
File in the future to be able to capture the type of executable header a file has (e.g. ELF), that
could also be of type MediaType but the property name might be ExecutableHeaderType.

An example conversion table from SPDX 2.3 FileType to SPDX 3.0 ContentType or
SoftwarePurpose can look like this:

SPDX 2 File Type SPDX 3 Software Purpose SPDX 3 Content Type

ARCHIVE Archive

BINARY application/octet-stream

SOURCE Source

TEXT text/plain

APPLICATION Application

AUDIO audio/*

IMAGE image/*

VIDEO video/*

DOCUMENTATION Documentation

SPDX text/spdx

OTHER Other

(Based on https://github.com/spdx/spdx-3-model/issues/82#issuecomment-1441476885 )

Package File Name

Description of Change
The packageFileName property and packageChecksum property has been replaced by a
relationship from a Package to a File. A relationship type of hasDistributionArtifact should be
used.

Translating from 2.3 to 3.0
Create an SPDX File with the name from the packageFileName and a verifiedUsing value from
the packageChecksum for a single file. If the packageFileName is a directory, then the SPDX
File is created with the directory name and is verified using the gitoid property on the File and a

https://github.com/spdx/spdx-3-model/issues/82#issuecomment-1441476885


fileKind of directory. Create a hasDistributionArifact relationship from the SPDX Package to the
SPDX File.

Rationale
Providing a File relationship to the download location will include more detailed and complete
information about the package file name used.

External Identifiers

Description of Change
In SPDX 3.0, a new property externalIdentifiers and a new type ExternalIdentifier is introduced.
This is in addition to retaining the ExternalRef property and classes.

In SPDX 2.3, both identifiers and references were captured in the externalRef property for
packages.

In addition to the structural changes, the “url” ExternalRef type was removed and is replaced by
the “securityOther” ExternalRef type.

Translating from 2.3 to 3.0
The following ExternalRef Types should be converted to ExternalIdentifiers:

● cpe22Type
● cpe23Type
● swid
● purl
● swh
● gitoid

All other ExternalRef types should remain as ExternalRef’s.

The url ExternalRef type should be converted to a “securityOther”.

Rationale
Distinguishing identifiers from references is key to several integrity and provenance use cases.
Creating a separate property and type enables easier identification of identifiers.



Package URL

Description of Change
In SPDX 3.0, Package URL is a new property for Artifact which is a superclass of Package.

Package URL is an External Ref type in SPDX 2.3.

Translating from 2.3 to 3.0
If there is a single ExternalReference of type purl without the optional ExternalRef comment
property, place that in the packageUrl property.

Rationale
Package URL is a very common method of identifying software packages. Moving this to a
property makes it significantly simpler to find and correlate Package URL identifiers.

Annotation

Description of Change
Annotations are now subclasses of Element, so it inherits a number of new optional properties
including names, annotations, and its own relationships.

Annotations are no longer a property of an Element. It is now a standalone element with a
“subject” field which points to the Element being annotated.

Translating from 2.3 to 3.0
A new Annotation element would be created for every annotation property in an element
(Package, File or Snippet). The subject property would point to the Element which has the
Annotation as a property.

The annotator from SPDX 2.3 should be translated to one of the creators for the creationInfo for
the Annotation and the annotationDate should be translated to the created field in the same
creationInfo. The creationInfo for the Annotation should be the creationInfo of the SPDX 2.3
document.

The SPDX 2.3 “comment” should use the statement field in SPDX 3.0.



Rationale
Changing from a property to a standalone element allows for relationships to exist outside the
element itself (e.g. you can now create an amended SPDX document which has a new
annotation for an element defined in the original document). This also supports third parties'
ability to assert Annotations on Elements that they did not create.

Relationship

Description of Change
The structure of the Relationship class has changed to have a single direction and allow more
than one related SPDX Elements. Relationships are now subclasses of Element, so it inherits a
number of new optional properties including names, annotations, and its own relationships.

Relationships are no longer a property of an Element. It is now a standalone element with a
“from” and “to” field.

A new property “completeness' ' complements the use of NONE and NOASSERTION for the
related SPDX elements.

Translating from 2.3 to 3.0
The “from” property would be populated by the SPDX Element which has the relationship
property. The “to” property will be the relatedSpdxElement.

When translating the relationshipType, the “from” and “to” may need to be swapped - the table
below will have a “Y” in the “Swap to and from?” column when this is necessary.

The completeness property would be constructed based on the following:
● “to” value is NONE: complete
● “to” value is NOASSERTION: noAssertion
● “to” value is an SPDX element: No value for the completeness - uses the default

Relationship migration is being worked out in the relationships spreadsheet. Once completed,
the following table will reflect the translation for relationship types from SPDX 2.3 to SPDX 3.0:

SPDX 2.3 Relationship
Type

SPDX 3.0 Relationship
Type

Swap to
and from?

LifecycleScopeType

AMENDS amendedBy Y

ANCESTOR_OF ancestorOf

BUILD_DEPENDENCY_OF dependsOn build



BUILD_TOOL_OF usesTool build (all lifecycle scope
could be appropriate)

CONTAINED_BY

CONTAINS contains

COPY_OF copiedTo

DATA_FILE_OF hasDataFile

DEPENDENCY_MANIFEST_OF hasDependencyManifest

DEPENDENCY_OF

DEPENDS_ON dependsOn LifecycleScopeType

DESCENDANT_OF decendentOf

DESCRIBED_BY

DESCRIBES describes

DEV_DEPENDENCY_OF dependsOn development

DEV_TOOL_OF usesTool development

DISTRIBUTION_ARTIFACT hasDistributionArtifact

DOCUMENTATION_OF hasDocumentation

DYNAMIC_LINK hasDynamicLink build, runtime

EXAMPLE_OF hasExample

EXPANDED_FROM_ARCHIVE expandsTo

FILE_ADDED hasAddedFile

FILE_DELETED hasDeletedFile

FILE_MODIFIED modifiedBy

GENERATED_FROM

GENERATES generates

HAS_PREREQUISITE hasPrequisite lifecycle scope

METAFILE_OF hasMetadata

OPTIONAL_COMPONENT_OF hasOptionalComponent

OPTIONAL_DEPENDENCY_OF hasOptionalDependency lifecycle scope

OTHER other

PACKAGE_OF packagedBy



PATCH_APPLIED patchedBy

PATCH_FOR

PREREQUISITE_FOR

PROVIDED_DEPENDENCY_OF hasProvidedDependency lifecycle scope

REQUIREMENT_DESCRIPTION_
FOR

hasRequirement lifecycle scope

RUNTIME_DEPENDENCY_OF dependsOn runtime

SPECIFICATION_FOR hasSpecification lifecycle scope

STATIC_LINK hasStaticLink lifecycle scope

TEST_CASE_OF hasTestCase

TEST_DEPENDENCY_OF dependsOn test

TEST_OF hasTest lifecycle scope

TEST_TOOL_OF usesTool test

VARIANT_OF hasVarient

Rationale
The addition of the completeness attribute is clearer than the use of NONE and
NOASSERTION.

Changing from a property to a standalone element allows for relationships to exist outside the
element itself (e.g. you can now create an amended SPDX document which has a new
relationship for an element defined in the original document). This enables primary Element
creating parties as well as third parties to express significantly greater contextual detail among
content they create as well as content created by others.

Note: A proposed change in cardinality for the “to” property is being tracked in issue #129.

Snippet

Description of Change
Byte and line range types have been changed from a StartEndPointer type to a
PositiveIntegerRange. Byte range is now optional.

https://github.com/spdx/spdx-3-model/issues/129


Translating from 2.3 to 3.0
Iterate through the “ranges” property. Any startPointer and endPointer with a property of “offset”
would be translated to a snippetByteRange property. Any startPointer and endPointer with a
property of “lineNumber” would translate to a snippetLineRange property.

A new Relationship would be created with the “from” pointing to the snippetFromFile and the “to”
pointing to the Snippet. They relationshipType would be CONTAINS.

Rationale
Using the W3C Pointer standard introduced significant complexity in the SPDX 2.X
specification. Although there may be some benefit in using a published standard, we have not
found any instances where the W3C Pointer ontology was useful for SPDX use cases.

Changing the snippetFromFile from a property to a relationship [to be filled in].

SpecVersion

Description of Change
The type of SpecVerion is changed from a simple string without constraints to a SemVer string
which must follow the Semantic Versioning format.

This adds a constraint where a patch version is required. Previous usage of the
SpecVersiononly included the major and minor version.

Translating from 2.3 to 3.0
Add a patch version of “0” to any previous spec version.

Rationale

The additional constraints align with best practices for versioning strings.

LicenseListVersion

Description of Change
The type of LicenseListVersion is changed from a simple string without constraints to a SemVer
string which must follow the Semantic Versioning format.

This adds a constraint where a patch version is required. Previous usage of the SPDX license
list only included the major and minor version.

https://semver.org/
https://semver.org/


Translating from 2.3 to 3.0
Add a patch version of “0” to any previous license list version.

Rationale
The additional constraints align with best practices for versioning strings.

Properties Removed
Below is a list of properties present in 2.3 and not present in 3.0. The Range / Where used is
where the property was used in the SPDX 2.3 model.

example

SPDX 2.3 Model Name
example

Tag/Value Name
Not used

Range / Where Used
LicenseException

Rationale

This field has not been used.

LicenseInfoInFiles

SPDX 2.3 Model Name
licenseInfoInFiles

Tag/Value Name
LicenseInfoInFiles

Range / Where Used
Package



Rationale
This field is redundant with the declaredLicense property in the Files contained in the Package.
It is recommended that the licenseInfoInFiles can be added as an Annotation to the Package in
the format: “SPDX 2.X LicenseInfoInFiles: [expression1], [expression2]” where the
[expressions] are the string representation of the license expressions.

FilesAnalyzed

SPDX 2.3 Model Name
filesAnalyzed

Tag/Value Name
FilesAnalyzed

Range / Where Used
Package

Rationale
Many users of the SPDX 2.X spec reported this property as very confusing.
NOTE: This is being tracked in Issue #84

Naming Differences
Below is a list of properties and classes where the name has been changed from 2.3 to 3.0.
The Range / Where used is where the property was used in the SPDX 2.3 model.

Release Date

SPDX 2.3 Model Name
releaseDate

Tag/Value Name
ReleaseDate

New Name
releaseTime

https://github.com/spdx/spdx-3-model/issues/84


Range / Where Used
Package

Rationale
Better reflects the granularity of the field.

Build Date

SPDX 2.3 Model Name
buildDate

Tag/Value Name
BuildDate

New Name
buildTime

Range / Where Used
Package

Rationale
Better reflects the granularity of the field.

Valid Until Date

SPDX 2.3 Model Name
validUntilDate

Tag/Value Name
ValidUntilDate

New Name
validUntilTime

Range / Where Used
Package



Rationale
Better reflects the granularity of the field.

External Document Reference

SPDX 2.3 Model Name
externalDocumentRef

Tag/Value Name
ExternalDocumentRef

New Name
import

Range / Where Used
SpdxDocument (Creation Information)

Rationale
Feedback from SPDX 2.X usage is that externalDocumentRef is confusing due to the similar
externalRef property.

NOTE: See structural changes related to this property

Checksum Class / Data Type

SPDX 2.3 Model Name
Checksum class name and checksum property name

Tag/Value Name
FileChecksum, PackageChecksum

New Name
verifiedUsing property and Hash class

Range / Where Used
Package, File



Rationale
More general concept allowing for different verification algorithms for different scenarios.
Note: Being tracked in issue #90.

Checksum Algorithm

SPDX 2.3 Model Name
checksumAlgorithm

Tag/Value Name
N/A - parsed from a string following the Checksum: keyword.

New Name
hashAlgorithm

Range / Where Used
Package, File

Rationale
The term “hash” better represents the intent of this property which is to validate the integrity of
the data whereas the term “checksum” is typically for the purpose of error checking.

Name

SPDX 2.3 Model Name
packageName, fileName

Tag/Value Name
PackageName, FileName

New Name
name

Range / Where Used
Package, File

https://github.com/spdx/spdx-3-model/issues/90


Rationale
In the SPDX 2.3 RDF Ontology, both spdx:fileName and spdx:packageName are sub-properties
of spdx:name. The OWL has a restriction that spdx:File has exactly one spdx:fileName and
spdx:Package has exactly one spdx:packageName.

Changing these restrictions to just spdx:name would simplify the model.

Version

SPDX 2.3 Model Name
versionInfo

Tag/Value Name
PackageVersion

New Name
packageVersion

Range / Where Used
Package

Rationale
This change would make the Tag/Value and RDF values consistent.

Home Page

SPDX 2.3 Model Name
doap:homepage

Tag/Value Name
PackageHomePage

New Name
homePage



Range / Where Used

Rationale
This is being tracked in issue #132.

Annotation Comment

SPDX 2.3 Model Name
rdfs:comment

Tag/Value Name
AnnotationComment

New Name
statement

Range / Where Used
Element (Package, File, Snippet)

Rationale
The rdfs:comment property is optional and has slightly different semantics in other uses (e.g.
comments on Elements). Changing the property name clearly distinguishes this usage as a
mandatory property for an Annotation.

With Exception Operator

SPDX 2.3 Model Name
WithExceptionOperator
member property in WithExceptionOperator
licenseException property in WithExceptionOperator

Tag/Value Name
With (part of License Expression)

New Name
WithAdditionOperator

https://github.com/spdx/spdx-3-model/issues/132


subjectLicense
subjectAddition

Range / Where Used
Package, File, Snippet

Rationale
Custom Additions have been added in SPDX 3.0 which operate in a similar manner to listed
License Exceptions. The new type and property names are more general to accommodate both
custom additions and listed license Exceptions.

License Exception

SPDX 2.3 Model Name
LicenseException
licenseExceptionId property in LicenseException
licenseExceptionText property in LicenseException
name property in LicenseException

Tag/Value Name
Not used in Tag/Value

New Name
ListedLicenseException
additionId
additionText
additionName

Range / Where Used
Package, File, Snippet

Rationale
Custom Additions have been added in SPDX 3.0 which operate in a similar manner to listed
License Exceptions. The new type and property names are more general to accommodate both
custom additions and listed license Exceptions.



ExtractedLicenseInfo

SPDX 2.3 Model Name
ExtractedLicenseInfo

Tag/Value Name
ExtractedText

New Name
CustomLicense

Range / Where Used
Package, File, Snippet, Document

Rationale
The SPDX 2.X term implied that the only property was text when in fact there are several
properties in common with the listed licenses. See issue #233 for context.

licenseComment

SPDX 2.3 Model Name
licenseComment

Tag/Value Name
LicenseName

New Name
name

Range / Where Used
License, ListedLicense, ExtractedText

https://github.com/spdx/spdx-3-model/issues/223


Rationale
“name” is used in the Element class. Since License is a type of (subclass of) Element, it should
use the same field otherwise there would be redundant fields for the same purpose.

LicenseComment

SPDX 2.3 Model Name
licenseComment

Tag/Value Name
LicenseComment

New Name
comment

Range / Where Used
License, ListedLicense

Rationale
“comment” is used in the Element class. Since License is a type of (subclass of) Element, it
should use the same field otherwise there would be redundant fields for the same purpose.

LicenseID

SPDX 2.3 Model Name
licenseId

Tag/Value Name
LicenseId

New Name
spdxId



Range / Where Used
License, ListedLicense

Rationale
“spdxId” is used in the Element class. Since License is a type of (subclass of) Element, it
should use the same field otherwise there would be redundant fields for the same purpose.

Range / Where Used
License, ListedLicense

Rationale

Primary Package Purpose

SPDX 2.3 Model Name
primaryPackagePurpose

Tag/Value Name
PrimaryPackagePurpose

New Name
primaryPurpose

Range / Where Used
Package

Rationale
The purpose property is now available for files and snippets in addition to Package resulting in a
more general name of primaryPurpose.

Note that additional purposes can be added using the additionalPurpose property.



JSON Format Changes
Please note that at this time, the SPDX 3.0 serialization formats are still in flux, the information
below is subject to change.

Pluralization
In SPDX 2.3, any property names which had a JSON Array as the value type were pluralized. In
3.0, we will consistently use the same name as in the model which is the singular form.

The rationale for this change is consistency in the formats and the fact that some plural forms
were not translated correctly.


