Fix direction

Reference

Neural intersection function

Dataset

300000 rays: import format:

Hardware

graphics card:NVIDIA GeForce RTX 4060 Laptop GPU

hyperparameter

batch size:4096 learning rate:0.1 echo:1 feature num:3 grid size(only for gridnet):512x512

Others

optimizer:Adam(default parameters) loss:MSELoss

Improved Gridnet

first,I give up bilinear interpolation and try to learn a matrix to express the relationship between neighboring vectors second, I consider neighboring vectors in the range 7×7 instead of 2×2

Third, I use a threshold to reduce noise.

Results

Different Networks

feed-forward neural network (FNN) and residual network(Resnet) are quickly converging

Improved gridnet converge faster than gridnet and end up with better results

	FNN	Resnet	gridnet	improved-gridnet
Time to train	51s	65s	49s	58s
model size	16KB	546KB	3084KB	4327KB

Different grid size

Networks with smaller grid size converges faster

Step

loss

Any direction

Reference

Instant neural graphics primitives with a multiresolution hash encoding

Dataset

300000 rays:

Hardware

graphics card: NVIDIA GeForce RTX 4060 Laptop GPU

hyperparameter

```
batch size:4096
learning rate:0.1
echo:1
feature num:1
n_features_per_level:2
log2_hashmap_size:22
finest_resolution:2048*4
n_levels:22
```

Others

optimizer:Adam(default parameters)
loss:BCELoss()

Results

azimuth=25 elevation=35

azimuth=20 elevation=32

Codes

Neural network:

GitHub - Rainy-fall-end/Rendernn

For brl-cad:

https://github.com/Rainy-fall-end/brlcad/tree/neural rendering