

QANet: Your Gateway to the Mina
Protocol Berkeley Upgrade
Version 1.3
Last Revised: March 3rd, 2024

Table of Contents
Partners Berkeley Testing
QANet test support tools
Getting Test Tokens and Setting Up Your QANet Wallet
Support Channels
Raising Issues on GitHub
Connecting your nodes to QANet

Recommended Hardware Requirements
QANet artifacts
QANet connection details

Instructions to launch the standalone Rosetta API Docker container
Instructions to run Mina Nodes with Docker

Flags and Environment Variables
Appendix 1 - Key differences between Mainnet and Berkeley

Archive Node
Rosetta API

Appendix 2 - migration from @o1labs/client-sdk to mina-signer

Partners Berkeley Testing
The 'Partners Berkeley Testing' phase is a crucial milestone on our journey towards the
major Mina Protocol Upgrade. This phase offers our partners a robust and stable
environment to test their integrations and systems with the Berkeley release candidate.
It's an opportunity to ensure seamless compatibility and performance with the upcoming
features.

QANet, your stable Berkeley playground
QANet is a dedicated network running the latest Berkeley version. QANet the network for
our partners to connect, deploy, and thoroughly test their integrations with the Mina
Protocol Blockchain.

Understanding QANet's Scope
It's important to note that QANet is not intended to test the Mainnet upgrade
mechanism. Instead, it's a stable network equipped with all the features that will be
available post-Berkeley upgrade, tailored for comprehensive testing of your systems. If
you are interested in participating in the testing of the Berkeley upgrade mechanism,
please contact the designated supporting team for further information.

QANet start date and duration
QANet goes live on February 6th at 12 pm UTC and will be operational for a duration of
one month. Please note that after this period, QANet will be decommissioned, resulting in
the loss of all network state. This timeframe is your window to explore, test, and prepare
for the next era of the Mina Protocol.

Objectives of the Partners Berkeley Testing
This phase is designed to ensure the readiness and robustness of integrations in the
QANet environment.

●​ Application Validation: Participants should validate that their applications
function correctly within the QANet. The validation includes verifying all standard
operations, features, and integrations as they would exist in the post-upgrade
environment.

●​ System Compatibility: Ensure all systems and tools are fully compatible with the
new features and structural changes introduced in the Berkeley upgrade. Please
refer to Appendix 1 for an extensive list of all the changes to the Archive Node and
Rosetta API applications.

●​ Issue Identification and Reporting: Actively identify any issues, anomalies, or bugs
within the QANet environment and report them in GitHub using the specially
created label qanet-partners-testing.

●​ Feedback and Insights: Please confirm your intention to validate your systems on
QANet, including a specific timeline for your testing activities. Once testing is
complete, share your results, observations, and any challenges or areas for
improvement directly with your designated Mina Foundation contact through your
chosen communication channel.

QANet test support tools
●​ Node GraphQL Endpoint

○​ https://qanet.minaprotocol.network/graphql
●​ MinaScan QANet custom blockchain explorer

○​ https://qanet.minaprotocol.network/
●​ Rosetta API online and offline

○​ Online - https://rosetta-online-qanet.minaprotocol.network
○​ Offline - https://rosetta-offline-qanet.minaprotocol.network

https://qanet.minaprotocol.network/graphql
https://qanet.minaprotocol.network/
https://rosetta-online-qanet.minaprotocol.network
https://rosetta-offline-qanet.minaprotocol.network

Getting Test Tokens and Setting Up Your QANet
Wallet

How to Obtain Test Tokens
QANet will not have a self-service faucet. To receive test tokens, contact your Mina
Foundation person of contact directly. Provide them with your QANet account address to
facilitate the transfer of test tokens.

Generating Your QANet Account Address
In the Mina Protocol, account generation is network-agnostic. This means you can use the
same account credentials across different networks, including QANet.

Create a QANet account using Auro Wallet
1.​ Install the Auro Wallet browser extension from the official site

https://www.aurowallet.com/
2.​ Follow the wallet's instructions to install and create a new MINA account
3.​ Add QANet as a Custom Network

a.​ Open the hamburger menu (top left) and select 'Network'.
b.​ Click on 'Add Network'.
c.​ Enter 'QANet' as the node name.
d.​ In the Node URL field, enter https://qanet.minaprotocol.network/graphql.
e.​ Click 'Confirm'.
f.​ QANet will now appear in the network dropdown menu, allowing you to

send and receive funds on QANet.

Support Channels
If you need personalized support or have specific questions, please contact the
designated supporting team for further information through your preferred method of
communication.

Raising Issues on GitHub
Please raise any issues encountered on GitHub. A specific label should be used when
creating an issue related to QANet. Use the label qanet-partners-testing to categorize it
appropriately for quick reference and response.

Connecting your nodes to QANet
QANet infrastructure provides all the tools and services required to test integration with
Mina Protocol Blockchain. Use the following details if you want to spin up your own Nodes
and Services connected to QANet.

https://www.aurowallet.com/

Recommended Hardware Requirements

Node Type Memory CPU Storage Network

Mina Daemon Node 32 GB RAM 8 core processor 64 GB

1 Mbps
Internet
Connection

SNARK Coordinator 32 GB RAM 8 core processor 64 GB

SNARK Worker 32 GB RAM 16/32 thread dedicated
instance 64 GB

Archive Node 32 GB RAM 8 core processor 64 GB

Rosetta API standalone
Docker image 32 GB RAM 8 core processor 64 GB

Note: Multiple SNARK Worker processes can run on the same SNARK Work server. 4 core/8
threads should be provisioned per SNARK Worker process, giving a total of 4 workers per SNARK

Work server. All your SNARK Worker processes should connect to your SNARK Coordinator.

QANet artifacts
The official release used in QANet is the Mina Daemon Berkeley Release Candidate 1
version 2.0.0berkeley-rc1

Installation Guides
●​ For complete instructions on setting up and running a Mina daemon node, please

visit Connecting to the Network.
●​ To set up a Mina archive node, follow the guide at Archive Node.
●​ If you want to integrate Rosetta with the Mina Protocol, use the standalone Rosetta

docker image.

Docker Images
●​ Standalone Mina Daemon Node

○​ gcr.io/o1labs-192920/mina-daemon:2.0.0berkeley-rc1-1551e2f-focal-berkeley
●​ Standalone Archive Node

○​ gcr.io/o1labs-192920/mina-archive:2.0.0berkeley-rc1-1551e2f-focal
●​ Standalone Rosetta API Docker, detailed instructions can be found further down

○​ gcr.io/o1labs-192920/mina-rosetta:2.0.0berkeley-rc1-1551e2f-focal

Debian Packages​
For installing Mina Daemon and Mina Archive Node as a Debian Package, please refer to
the official Release Note: https://github.com/MinaProtocol/mina/discussions/15041

QANet connection details
●​ Chain id

○​ e7f5e558ac741bf474c0ce21d372193b6de5bf0028598c90853ba4b4a81233b7

https://github.com/MinaProtocol/mina/releases/tag/2.0.0berkeley_rc1
https://github.com/MinaProtocol/mina/releases/tag/2.0.0berkeley_rc1
https://docs.minaprotocol.com/node-operators/connecting-to-the-network
https://docs.minaprotocol.com/node-operators/archive-node
https://github.com/MinaProtocol/mina/discussions/15041

None

None

●​ Git SHA-1
○​ 1551e2faaa246c01636908aabe5f7981715a10f4

●​ Seed Lists URL
○​ https://673156464838-mina-seed-lists.s3.us-west-2.amazonaws.com/partners/

qanet-seed-nodes.txt
●​ Genesis Ledger

○​ http://673156464838-mina-genesis-ledgers.s3-website-us-west-2.amazonaws
.com/qanet/genesis_ledger.json

●​ QANet pre-computed blocks
○​ http://673156464838-mina-precomputed-blocks.s3-website-us-west-2.amazo

naws.com/qanet
●​ Archive Node PostgreSQL Dumps

○​ http://673156464838-mina-archive-node-backups.s3-website-us-west-2.amaz
onaws.com/qanet

●​ Archive Database Schemas
○​ https://raw.githubusercontent.com/MinaProtocol/mina/1551e2faaa246c01636

908aabe5f7981715a10f4/src/app/archive/create_schema.sql
○​ https://raw.githubusercontent.com/MinaProtocol/mina/1551e2faaa246c01636

908aabe5f7981715a10f4/src/app/archive/zkapp_tables.sql

Instructions to launch the standalone Rosetta
API Docker container

1 - Create a file named qanet.env with the following content

MINA_NETWORK=qanet
PEER_LIST_URL=https://673156464838-mina-seed-lists.s3.us-west-2.amazonaws.co
m/partners/qanet-seed-nodes.txt
MINA_ARCHIVE_DUMP_URL=http://673156464838-mina-archive-node-backups.s3-websi
te-us-west-2.amazonaws.com/qanet
MINA_GENESIS_LEDGER_URL=http://673156464838-mina-genesis-ledgers.s3-website-
us-west-2.amazonaws.com/qanet/genesis_ledger.json
BLOCKS_BUCKET=http://673156464838-mina-precomputed-blocks.s3-website-us-west
-2.amazonaws.com/qanet
POSTGRES_DBNAME=archive

2 - Run the following command

docker run --name rosetta --rm \
 --env-file qanet.env \

http://673156464838-mina-genesis-ledgers.s3-website-us-west-2.amazonaws.com/qanet/genesis_ledger.json
http://673156464838-mina-genesis-ledgers.s3-website-us-west-2.amazonaws.com/qanet/genesis_ledger.json
http://673156464838-mina-precomputed-blocks.s3-website-us-west-2.amazonaws.com/qanet
http://673156464838-mina-precomputed-blocks.s3-website-us-west-2.amazonaws.com/qanet
http://673156464838-mina-archive-node-backups.s3-website-us-west-2.amazonaws.com/qanet
http://673156464838-mina-archive-node-backups.s3-website-us-west-2.amazonaws.com/qanet

None

None

 -p 3085:3085 \
 -p 3087:3087 \
 -p 3088:3088 \
 --entrypoint '' \
 gcr.io/o1labs-192920/mina-rosetta:2.0.0berkeley-rc1-1551e2f-focal \
 bash -c "mkdir /genesis_ledgers && ./docker-start.sh"

Instructions to run Mina Nodes with Docker

1 - Retrieve the QANet Genesis Ledger
This step is critical. Because the QANet is a custom network, the Genesis Ledger needs to
be downloaded first.

Create config directory​
mkdir -p .mina-config/keys
​
Retrieve Genesis Ledger​
export MINA_CONFIG_FILE=.mina-config/genesis_ledger.json
export
MINA_GENESIS_LEDGER_URL=http://673156464838-mina-genesis-ledgers.s3-website-
us-west-2.amazonaws.com/qanet/genesis_ledger.json
curl -o "$MINA_CONFIG_FILE" "$MINA_GENESIS_LEDGER_URL"

2- Generation of libp2p keypair
Each node within the network must possess its own distinct libp2p key pair. This
requirement also extends to block producer nodes, despite utilizing a common block
production key. Every node operator must generate unique libp2p keys locally on their
respective machines using the following command:

Generate libp2p keypair
docker run --rm --name generate-libp2p-keypair \
 -e MINA_LIBP2P_PASS='My_V3ry_S3cure_Password' \
 -v $(pwd)/.mina-config/keys:/keys \
 --entrypoint='' \

gcr.io/o1labs-192920/mina-daemon:2.0.0berkeley-rc1-1551e2f-focal-berkeley \
 mina libp2p generate-keypair --privkey-path /keys/libp2p

None

None

Update directory permissions​
chmod 700 $(pwd)/.mina-config/keys

See more on generating key pairs.

3- Run Mina Daemon
This command will connect your daemon to the QANet network with the basic flags,
please refer to the Flags and Environment Variables section for a more granular
configuration

docker run --rm --name daemon \
 -e MINA_LIBP2P_PASS='My_V3ry_S3cure_Password' \
 -v $(pwd)/.mina-config:/root/.mina-config \
 -p 3085:3085 \
 -p 10801:10801 \
 --entrypoint='' \

gcr.io/o1labs-192920/mina-daemon:2.0.0berkeley-rc1-1551e2f-focal-berkeley \
 mina daemon --libp2p-keypair /root/.mina-config/keys/libp2p \
 --rest-port 3085 \
 --insecure-rest-server \
 --peer-list-url
https://673156464838-mina-seed-lists.s3.us-west-2.amazonaws.com/partners/qan
et-seed-nodes.txt \
 --config-file /root/.mina-config/genesis_ledger.json​

Flags and Environment Variables

Block Producer

mina daemon
--block-producer-key <path to the wallet private key file>
--config-directory <path to the mina configuration directory>
--config-file $MINA_CONFIG_FILE
--enable-peer-exchange true

https://docs.minaprotocol.com/test-world-2/launching-a-node#:~:text=Generating%20a%20Key%20Pair

None

--file-log-level Info
--file-log-rotations 500
--generate-genesis-proof true
--internal-tracing
--libp2p-keypair <path to the node libp2p private key file>
--log-json
--log-level Debug
--log-snark-work-gossip true
--node-error-url https://nodestats-itn.minaprotocol.tools/submit/stats
--node-status-url https://nodestats-itn.minaprotocol.tools/submit/stats
--peer-list-url
https://673156464838-mina-seed-lists.s3.us-west-2.amazonaws.com/partners/qanet-seed-
nodes.txt

ENVIRONMENT VARIABLES
RAYON_NUM_THREADS=6
MINA_LIBP2P_PASS
MINA_PRIVKEY_PASS

SNARK Coordinator

mina daemon
--config-directory <path to the mina configuration directory>
--config-file $MINA_CONFIG_FILE
--enable-peer-exchange true
--file-log-level Debug
--file-log-rotations 500
--internal-tracing
--libp2p-keypair <path to the node libp2p private key file>
--log-json
--log-level Debug
--log-snark-work-gossip true
--node-error-url https://nodestats-itn.minaprotocol.tools/submit/stats
--node-status-url https://nodestats-itn.minaprotocol.tools/submit/stats
--peer-list-url
https://673156464838-mina-seed-lists.s3.us-west-2.amazonaws.com/partners/qanet-seed-
nodes.txt
--run-snark-coordinator <wallet public key>
--snark-worker-fee 0.001
--work-selection seq

ENVIRONMENT VARIABLES
RAYON_NUM_THREADS=6
MINA_LIBP2P_PASS

None

SNARK Worker

mina internal snark-worker
--proof-level full
--shutdown-on-disconnect false
--daemon-address <snark coordinator IP:port>​
​
ENVIRONMENT VARIABLES
RAYON_NUM_THREADS:8

Appendix 1 - Key differences between Mainnet
and Berkeley

Archive Node
If you are using the Archive Node database directly for your system integrations, then you
should understand all the changes that might impact your applications. The most
important change is that the balances table in the mainnet schema will no longer exist.
In the new schema, it is replaced with the table accounts_accessed - from an application
semantics point of view, the data in accounts_accessed is still the same.

In the Berkeley protocol, accounts can now have the same public key but a different
token_id. This means accounts are identified by both their public key and token_id, not
just the public key. Consequently, the foreign key for the account in all tables is
account_identifier_id instead of public_key_id.

Schema differences
●​ Removed Types

○​ The options create_token, create_account, and mint_tokens have been
removed from the user_command_type enumeration.

●​ Indexes Dropped
○​ We've removed several indexes from tables, this may affect how you search

and organize data:
■​ Idx_public_keys_id
■​ Idx_public_keys_value
■​ Idx_snarked_ledger_hashes_value
■​ idx_blocks_id, idx_blocks_state_hash

●​ Table Removed
○​ The balances table is no longer available.

●​ New Tables Added
○​ We've introduced the following new tables:

■​ tokens, token_symbols, account_identifiers, voting_for,
protocol_versions, accounts_accessed, accounts_created,
zkapp_commands, blocks_zkapp_commands, zkapp_field,

zkapp_field_array, zkapp_states_nullable, zkapp_states,
zkapp_action_states, zkapp_events, zkapp_verification_key_hashes,
zkapp_verification_keys, zkapp_permissions, zkapp_timing_info,
zkapp_uris, zkapp_updates, zkapp_balance_bounds,
zkapp_nonce_bounds, zkapp_account_precondition, zkapp_accounts,
zkapp_token_id_bounds, zkapp_length_bounds,
zkapp_amount_bounds, zkapp_global_slot_bounds,
zkapp_epoch_ledger, zkapp_epoch_data,
zkapp_network_precondition, zkapp_fee_payer_body,
zkapp_account_update_body, zkapp_account_update,
zkapp_account_update_failures

●​ Updated Tables
○​ The following tables have been updated

■​ timing_info, user_commands, internal_commands, epoch_data,
blocks, blocks_user_commands, blocks_internal_commands

Differences per table
●​ timing_info

○​ Removed columns: token and initial_balance.
●​ user_commands

○​ Removed columns: fee_token, token
●​ internal_commands

○​ Removed columns: token
○​ Renamed column command_type to type.

●​ epoch_data
○​ Added columns: total_currency, start_checkpoint, lock_checkpoint,

epoch_length
●​ blocks

○​ Added columns: last_vrf_output, min_window_density,
sub_window_densities, total_currency, global_slot_since_hard_fork,
global_slot_since_genesis, protocol_version_id, proposed_protocol_version_id

○​ Removed column: global_slot
●​ blocks_user_commands

○​ Removed columns: fee_payer_account_creation_fee_paid,
receiver_account_creation_fee_paid, created_token, fee_payer_balance,
source_balance, receiver_balance

○​ Added index: idx_blocks_user_commands_sequence_no
●​ blocks_internal_commands

○​ Removed columns: receiver_account_creation_fee_paid, receiver_balance
○​ Added indexes: idx_blocks_internal_commands_sequence_no,

idx_blocks_internal_commands_secondary_sequence_no

Rosetta API
Berkeley upgrade introduce two new operation types: zkapp_fee_payer_dec and
zkapp_balance_change.

JavaScript

Appendix 2 - migration from
@o1labs/client-sdk to mina-signer

Below you will find an example of how to use mina-signer library. Please keep in mind the
following:

1.​ The network should be “testnet” for Devnet network.
2.​ Make sure to adjust the nonce to the correct nonce on the account you want to use
3.​ Use fee 1 MINA to get the TX submitted quickly

import { Client } from 'mina-signer';

// create testnet client and define hard-coded keypair

const client = new Client({ network: 'testnet' });

let privateKey = Your private key;
let publicKey = the public key - perhaps derived from the private key
using -> client.derivePublicKey(privateKey);

// define and sign payment

let payment = {
 from: publicKey,
 to: 'to public key',
 amount: 100,
 nonce: 1,
 fee: 1000000,
};

const signedPayment = client.signPayment(payment, privateKey);

// send payment to graphql endpoint

let url = 'https://qanet.minaprotocol.network/graphql';

let query = `mutation {
 sendPayment(
 input: ${objectToGraphqlQuery(signedPayment.data)},
 signature: ${objectToGraphqlQuery(signedPayment.signature)}

) {
 payment { id }
 }
 }`;

console.log('=======================');
console.log(query);
console.log('=======================');

let response = await fetch(url, {
 method: 'POST',
 headers: { 'Content-Type': 'application/json' },
 body: JSON.stringify({ operationName: null, query, variables: {}
}),
});
if (response.status == 200) {
 let json = await response.json();
 console.dir(json, { depth: null });
} else {
 let text = await response.text();
 console.log('Error:\n', text);
}

function objectToGraphqlQuery(obj: any) {
 let json = JSON.stringify(obj, null, 2);
 // removes the quotes on JSON keys
 return json.replace(/\"(\S+)\"\s*:/gm, '$1:');
}

	
	QANet: Your Gateway to the Mina Protocol Berkeley Upgrade
	Table of Contents
	Partners Berkeley Testing
	QANet, your stable Berkeley playground
	Understanding QANet's Scope
	QANet start date and duration
	Objectives of the Partners Berkeley Testing

	QANet test support tools
	Getting Test Tokens and Setting Up Your QANet Wallet
	How to Obtain Test Tokens
	Generating Your QANet Account Address
	Create a QANet account using Auro Wallet

	Support Channels
	Raising Issues on GitHub
	Connecting your nodes to QANet
	Recommended Hardware Requirements
	QANet artifacts
	Installation Guides
	Docker Images

	QANet connection details

	Instructions to launch the standalone Rosetta API Docker container
	1 - Create a file named qanet.env with the following content
	2 - Run the following command

	Instructions to run Mina Nodes with Docker
	1 - Retrieve the QANet Genesis Ledger
	2- Generation of libp2p keypair
	3- Run Mina Daemon
	Flags and Environment Variables
	Block Producer
	SNARK Coordinator
	SNARK Worker

	Appendix 1 - Key differences between Mainnet and Berkeley
	Archive Node
	Schema differences
	Differences per table

	Rosetta API

	Appendix 2 - migration from @o1labs/client-sdk to mina-signer

