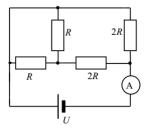

Краевая олимпиада по физике 2022

Задача №1

Тело поднимают с помощью наклонной плоскости и системы блоков (смотри рисунок).

Определите массу тела, которую может поднять данная система, приложив силу F? Высота наклонной плоскости H, длина L, система невесома, трением пренебречь, ускорение свободного падения g?

Максимум за задачу 7 баллов


Задача №2

В трех одинаковых теплоизолированных сосудах находится одинаковое количество масла при комнатной температуре. Нагретый металлический цилиндр опустили в первый сосуд. После того, как между цилиндром и маслом установилось тепловое расширение, цилиндр перенесли во второй сосуд. После того, как и там установилось равновесие, цилиндр перенесли в третий сосуд. На сколько градусов повысилась температура масла в третьем сосуде, если во втором она возросла на $\Delta t_2 = 5^{\circ} \text{C}$? А в первом на $\Delta t_1 = 20^{\circ} \text{C}$?

Максимум за задачу 7 баллов

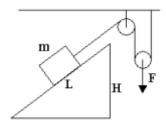
Задача №3

Идеальный амперметр в цепи, схема которой изображена на рисунке,

показывает силу тока I=9мA. Определите сопротивление резистора R, если напряжение идеального источника U=6B.

Электрон, получивший скорость при движении в электрическом поле с разностью потенциалов 1000В, влетает в вакууме в однородное магнитное поле с индукцией 0,2 Тл перпендикулярно линиям индукции. Определите радиус окружности, описываемой электроном. (m_e =9.1·10⁻³¹кг, q=1.6·10⁻¹⁹Кл). Максимум за задачу 7 баллов

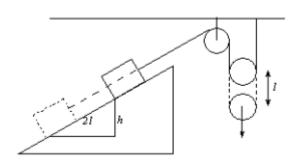
Задача №5



В 1849 году французский физик Физо поставил следующий опыт. Свет от источника **a** (смотри рисунок) падал на зеркало **d**, расположенное на расстоянии **s**=3.733км, и, отражаясь, попадал в глаз наблюдателя. Быстро вращающийся зубчатый диск, пропуская порцию света, за время **t**, в течение которого свет шел до зеркала и обратно, мог повернуться так, что загораживал своим движущимся зубцом путь отраженному свету, и наблюдатель не видел его. Какое значение скорости света получил Физо в этом опыте, если диск имел N=720 зубцов, вращался с частотой **v**=29,2 оборота в секунду? (Ширина зубцов и промежутки между ними одинаковы) Максимум за задачу 7 баллов

Решение

Задача №1


Тело поднимают с помощью наклонной плоскости и системы блоков (смотри рисунок).

Определите массу тела, которую может поднять данная система, приложив силу F? Высота наклонной плоскости H, длина L, система невесома, трением пренебречь, ускорение свободного падения g?

Решение:

Если подвижный блок передвинуть, приложив силу \mathbf{F} вниз на расстояние \mathbf{l} совершив работу $\mathbf{F}\mathbf{l}$, то тело на наклонной плоскости сдвинется на $\mathbf{2l}$ и подвинется на высоту \mathbf{h} которую можно найти из подобия треугольников

$$\frac{h}{H} = \frac{2l}{L}$$
 откуда $h = \frac{2lH}{L}$.

При отсутствии трения совершенная работа будет равна потенциальной энергии тела $\mathbf{E}_{n} = \mathbf{A} \mathbf{E}_{n} = \mathbf{mghA} = \mathbf{Fl}$.

Следовательно, mgh=Fl отсюда подставив h получим выражение

$$\mathbf{mg} = \mathbf{Fl}$$
 сократив \mathbf{l} ивыразим искомую величину $\mathbf{m} = \frac{FL}{2gH}$

Критерии оценивания

Критерий	Балл
Выявлена связь между перемещением подвижного блока и телом на	1
наклонной плоскости	
Показаны на рисунке соотношения длин и высот или указано подобие	1
треугольников	
Определена высота, на которую поднято тело	1
и записана формула.	
Верно применен закон сохранения энергии: точнее	
сформулирован закон или представлен в виде формулы	1
записано уравнение закона	1

указана подстановка h	1
Определена масса тела	1

Максимум за задачу 7 баллов

Задача №2

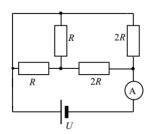
В трех одинаковых теплоизолированных сосудах находится одинаковое количество масла при комнатной температуре. Нагретый металлический цилиндр опустили в первый сосуд. После того, как между цилиндром и маслом установилось тепловое расширение, цилиндр перенесли во второй сосуд. После того, как и там установилось равновесие, цилиндр перенесли в третий сосуд. На сколько градусов повысилась температура масла в третьем сосуде, если во втором она возросла на $\Delta t_2 = 5^{\circ}C$? А в первом на $\Delta t_1 = 20^{\circ}C$?

Решение:

После установления равновесия в первом сосуде температура тела на Δt_1 =20°C превысит температуру масла во втором сосуде. При опускании тела во второй сосуд масло нагреется на 5°C, а тело остынет на 15°C.

Значит соотношение теплоемкостей сосуда с маслом и металлического цилиндра могут быть выражены уравнением $15C_{\scriptscriptstyle T}=5C_{\scriptscriptstyle CM.}$ соотношение теплоемкостей обратно пропорционально соотношению температур. После установления равновесия во втором сосуде температура тела на 5° С превысит температуру в третьем сосуде. Запишем уравнение теплового баланса в третьем сосуде

$$C_{\text{\tiny T}}(5^0 - \Delta t_3) = C_{\text{\tiny CM}} \cdot \Delta t_3.$$

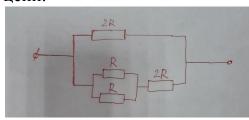

Решив систему уравненийдвух уравнений теплового баланса $\{15\mathrm{Ct}=5\mathrm{Ccm}\,\mathrm{Ct}(5^\circ-\Delta t_3)=\mathrm{Ccm}\cdot\Delta t_3$ при выражении из системы уравнений исключаются теплоемкости тела и сосуда с маслом, выразим Δt_3

$$\cdot 3\Delta t_3 = 5 \cdot \Delta t_3 \quad \cdot 4\Delta t_3 = 5 \quad \cdot \Delta t_3 = 1.25^{\circ} \text{C}$$

Критерии оценивания

Критерий	Балл
Сформулировано условия теплового равновесия для первого и второго	1
сосуда, правильно указаны значения температур	
Записано соотношение теплоемкостей тела и сосуда с маслом	1
Сформулировано условие теплового равновесия для второго и третьего	1
сосуда	
Записано уравнение теплового баланса при опускании тела в третий сосуд	2
Решена система уравнений и получено правильное значение искомой	2
величины	

Идеальный амперметр в цепи, схема которой изображена на рисунке,



показывает силу тока I=9мA. Определите сопротивление резистора R, если напряжение идеального источника U=6B.

Решение:

Запишем закон Ома для участка цепи $I = \frac{U}{R}$,

Перечертим схему, представленную на рисунке и найдем общее сопротивление цепи.

$$R_0 = \frac{2R \cdot \left(\frac{R \cdot R}{R + R} + 2R\right)}{2R + \left(\frac{R \cdot R}{R + R} + 2R\right)} = \frac{2R \left(\frac{R^2}{2R} + 2R\right)}{2R + \frac{R^2}{2R} + 2R} = \frac{R^2 + 4R^2}{4R + \frac{R^2}{2R}} = \frac{R^2 + 4R^2}{4R + \frac{R^2}{2R}} = \frac{R^2 + 4R^2}{2R} = \frac{R^2 + 4R^2}{2R$$

Подставим полученное значение сопротивления в формулу закона Ома найдем сопротивление резистора.

$$I = \frac{9U}{10R}, R = \frac{9U}{10I} = \frac{9*6B}{10*0,009A} = 600O_M$$

Критерии оценивания

Критерий	Балл
Записан закон Ома или	1
Представлена упрощенная схема цепи	1
Найдено общее сопротивление цепи любым способом	2
Получена итоговая формула для сопротивления	2
Найдено численное значение сопротивления	1

Электрон, получивший скорость при движении в электрическом поле с разностью потенциалов 1000В, влетает в вакууме в однородное магнитное поле с индукцией 0,2 Тл перпендикулярно линиям индукции. Определите радиус окружности, описываемой электроном. (m_e =9.1·10⁻³¹кг, q=1.6·10⁻¹⁹Кл).

Решение:

На электрон движущийся со скоростью одействует в магнитном поле сила Лоренца

 F_{π} =е v В $sin\alpha$. α =90 $^{0}sin\alpha$ =1. Направление силы Лоренца перпендикулярно скорости электрона, поэтому сила Лоренца играет роль центростремительной силы. Следовательно, электрон движется по окружности радиусом \mathbf{R} а сила F_{π} = $\frac{mv^{2}}{R}$

$$e \upsilon B = \frac{mv^2}{R} (1)$$

Скорость электрон приобретает в электрическом поле в электрическом поле обладая при этом кинетической энергией.

$$E_{K} = \frac{mv^{2}}{2}$$
 $E_{3} = e U$ прировняв найдем скорость электрона $v = \sqrt{2 \frac{e}{m}} * U$ (2)

Подставив в форму (1) значение для скорости (формула (2)) и выразив R

$$R = \frac{m v}{R} \qquad R = \frac{m v}{e B} \qquad R = \frac{m \sqrt{2 \frac{e}{m} \cdot v}}{e B}$$

$$R = \frac{9.1 \cdot 10^{31} \text{kr} \sqrt{\frac{2.1.6 \cdot 10^{19} \text{ku}}{9.1 \cdot 10^{34} \text{kr}}} \cdot 10008} = \frac{9.1 \cdot 10^{34} \sqrt{9.35 \cdot 10^{15}}}{9.32 \cdot 10^{19}} = 38 \cdot 10^{12} \sqrt{3.5 \cdot 10^{14}} = 28 \cdot 10^{12} \sqrt{3.5 \cdot 10^{14}} = 28 \cdot 10^{12} \cdot 1.8 \cdot 10^{4} = 50 \cdot 10^{5} = 5 \cdot 10^{4} \text{ u um} \qquad 9.5 \text{ ums}$$

Критерии оценивания

Критерий	Балл
Верно записана сила Лоренца, действующая на частицу в магнитном поле	1
Записано условия движения по окружности, указано уравнение для	2
нахождения радиуса	
Найдена скорость электрона	2
Найден радиус получено его численное значение	2

В 1849 году французский физик Физо поставил следующий опыт. Свет от источника $\bf a$ (смотри рисунок) падал на зеркало $\bf d$, расположенное на расстоянии $\bf s$ =3.733км, и, отражаясь, попадал в глаз наблюдателя. Быстро вращающийся зубчатый диск, пропуская порцию света, за время $\bf t$, в течение которого свет шел до зеркала и обратно, мог повернуться так, что загораживал своим движущимся зубцом путь отраженному свету, и наблюдатель не видел его. Какое значение скорости света получил Физо в этом опыте, если диск имел $\bf N$ =720 зубцов, вращался с частотой $\bf v$ =29,2 оборота в секунду? (Ширина зубцов и промежутки между ними одинаковы)

Решение:

 $c = \frac{2S}{t}$ За время**t**диск поворачивается на один зубец, т.е на $\frac{1}{2N}$ полного оборота (Ширина зубцов и промежутки между ними одинаковы). Время одного оборота $T = \frac{1}{v}$. Следовательно $t = \frac{1}{2Nv}$ подставив в формулу для c, получим выражение $c = 4Nsv = 4 \cdot 720 \cdot 3,733$ км·29,20б/c≈315000 км/с

Критерии оценивания

Критерий	Балл
Верно записана формула скорости света	2
Верно записана формул времени оборота диска	2
Найденовыражение и приблизительное численное значение скорости света	3