
The World’s Most Advanced Sandbox™
Li Haoyi​ Tim Kaler​ Frank Li​ Ivan Sergeev

Abstract
To safely run untrusted Java code, the untrusted code should be sandboxed. Traditional
sandboxes rely on non-portable operating system facilities to run the code in separate
processes with restricted privileges, which may also incur a high performance overhead. In this
report, we introduce TWMAS, a sandbox that does not make use of the operating system.
Instead, it uses the Java SecurityManager and instruction-rewriting to safely sandbox untrusted
code directly running within a single host Java Virtual Machine.

1 Introduction
The World’s Most Advanced Sandbox™ (TWMAS) is a portable sandbox designed to safely run
untrusted Java bytecode. Unlike traditional sandboxes, many of which use non-portable
operating system (OS) facilities to run the untrusted code in a separate process with restricted
privileges, TWMAS does not make use of the OS. Rather, it provides a way for a host Java
Virtual Machine (JVM) to execute untrusted code directly, using the Java SecurityManager to
block access to dangerous capabilities (Filesystem, Network, System, etc.) and
instruction-rewriting in order to bound the number of bytes of memory allocated and the number
of instruction executed.

Since Java applications run on a virtual machine, there already exists ways to limit the
capabilities of untrusted code. For example, the SecurityManager can be used to assign
Unix-like permissions to an application, limit access to the network, and block dangerous system
calls. However, it does not provide a way to limit the CPU usage or memory allocations
performed by any section of untrusted code within a single JVM.

The traditional way to impose these limits is to run the untrusted code in a separate JVM.
However, it can take on the order of hundreds of milliseconds to spawn a new JVM, which is a
significant overhead when running a large number of small untrusted functions.

In order to run untrusted code within a single process one needs a means of limiting the amount
of memory it can allocate to prevent it from crashing the process. Similarly, if running the
untrusted code within the same thread, we need a way of ensuring it eventually returns control
back to the host and does not loop forever.

What
At it’s heart, TWMAS provides a novel primitive that an application developer can use to run
untrusted code:

run(Runnable untrusted, long maxMemory, long maxInstructions)

This method is called by the host process, and will execute the untrusted Runnable with a
limited number of instructions it can execute and a limited amount of memory it can allocate. If
the untrusted Runnable overshoots these limits, a ResourceLimitException is thrown, e.g.

sandbox.runtime.ResourceLimitException: Too Much Instructions Use! Additional

3 + existing 49999 would exceed maximum 50000

This will return control back to the host, who can catch the exception and resume. This prevents
the untrusted code from looping forever, or allocating memory until the process fails.

These limits are imposed by re-writing the instructions of the untrusted code, as well as any
code that it touches (i.e. imported Java libraries), to insert resource accounting checks into the
untrusted code, thereby forcing it to keep track of the number of instructions and the amount of
memory it has used. The rewriting happens at class load-time through the Java Instrumentation
API. All code which runs on our instrumented JVM is associated with an Account object, which
keeps track of the maximum resources the code is allowed to consume.

In this way, we are able to safely load untrusted Java binaries into our application, and run them
directly, while being confident that this untrusted code cannot do anything that could possible
harm or compromise the Host JVM.

Roadmap
In this report, we document the details of TWMAS. In Section 2, we show how to enforce
resource access control using the Java SecurityManager. Section 3 describes limiting memory
usage, while Section 4 describes limiting number of instructions executed. We discuss TWMAS
compatibility considerations in Section 5, and future works in Section 6. We make concluding
remarks in Section 7.

2 SecurityManager
Untrusted code should not have arbitrary access to system resources or system operations. For
example, the untrusted code should not be able to arbitrarily read or write to files in the file
system, connect to sockets, spawn threads, kill a process, or change the current permissions
settings. Our sandbox must mediate access to these resources, only allow accesses specifically

http://docs.oracle.com/javase/6/docs/api/java/lang/instrument/Instrumentation.html
http://docs.oracle.com/javase/6/docs/api/java/lang/instrument/Instrumentation.html

granted, and blocking all others.

How
Java’s SecurityManager is a class that allows an application to implement an access control
security policy. A policy file defines the policy, a whitelist of fine-grained permissions to access
resources. When an application instantiates the SecurityManager, it passes as an argument
the path to the policy file. From then on, the SecurityManager enforces access control as
defined by the policy on all code executed within the same JVM. Note this means that there is a
single SecurityManager instance per JVM. Additionally, since the policy is a whitelist, all
resource access will be restricted unless specifically granted. Below is a simple example policy,
allowing only reads from test.txt and socket connections only to localhost on port 7777.

simple_example.policy

grant {

permission java.io.FilePermission "test.txt", "read";

​ ​ permission java.net.SocketPermission "localhost:7777", "connect";

};

In TWMAS, we instantiate the SecurityManager after compiling the untrusted code, but before
executing it with run(). The primary reason for this order is to avoid adding extra permissions
needed by the compiler to the policy. This means the policy can instead simply define the
permissions only granted to the untrusted code. Note that deleting an instance of the
SecurityManager or changing the permissions requires its own special permission. By not
granting the untrusted code these permissions, the sandboxed code cannot modify its access
control permissions and will be restricted to the defined policy. Thus, by using Java’s built-in
SecurityManager, TWMAS is able to enforce fine-grained access control to system resources
and operations.

3 Memory Counting
Memory accounting is the mechanism by which we limit how much memory a section of
untrusted code can allocate. At a high level, TWMAS assigns an Account object to each section
of untrusted code, which specifies limits on memory usage (and number of instructions,
described later). We insert accounting checks before each bytecode instruction that allocates
memory. The Account object tracks how much memory has been allocated and prevents the
allocation if the limit has been reached.

How
We consider four different bytecode instructions which can allocate memory. The NEW

instruction which allocates memory for an object of a given class, the NEWARRAY instruction
which allocates memory for a new one-dimensional array of a given type, the MULTIANEWARRAY
instruction which allocates memory for a new multi-dimensional array, and the INVOKEVIRTUAL,
INVOKESTATIC instructions which allocate memory as the result of the method calls
Object.clone() and Array.newInstance(). Prior to each instruction that allocates memory
we insert an INVOKESTATIC instruction that calls the Recorder.checkAllocation method. The
checkAllocation method calculates the allocation size, and then withdraws bytes from the
untrusted code’s account. If there are insufficient bytes in the account, then a
ResourceLimitException is thrown.

Calculating Allocation Size
For the NEW instruction, the checkAllocation method is called with a String argument that
stores the name of the allocated object’s class. We estimate the amount of memory needed to
allocate an object of a given class using a global map of classes to their field counts. Since
some classes may not be loaded until after the NEW instruction, it is sometimes necessary to
load the class for analysis during the checkAllocation() call to determine the field count.
Once the class’s field count is obtained, we estimate the size of the object to be 8 * numFields
bytes.

Example (Object Allocation)
// Has 7 fields, should withdraw 8 * 7 bytes.
String s = new String();

For the NEWARRAY and MULTIANEWARRAY instructions, the checkAllocation() method is called
with the size of the primitive type being allocated and the dimensions of the array. During
instrumentation, we map each primitive type (double, int, char, etc.) to its size in bytes. The size
of object references may vary depending on the JVM, so we estimate their size to be 8 bytes.

Example (Arrays)
// Should withdraw 4 * 1000 bytes.
int prepareForTrouble = new int[1000];

// Should withdraw 8 * 1000 * 1000 bytes.

double[][] makeItDouble = new double[1000][1000];

Finally, we consider the INVOKESTATIC and INVOKEVIRTUAL instructions which can allocate
memory when invoking the Array.newInstance and Object.clone methods.

Example (Special Methods)
// Should withdraw 10 * 8 bytes
java.lang.reflect.Array.newInstance(Object.class, 10);

// Should withdraw 100 * 8 bytes

long[] sheep = new long[100];

// Should withdraw sizeOf(sheep) bytes

long[] dolly = sheep.clone();

Object registration
Many Java applications create a large number of short lived objects which are collected by the
JVM’s garbage collector. In order to support these applications, we deposit bytes back into the
untrusted code’s account when one of its objects is freed by the garbage collector. If we do not
do this, code which allocates a large number of short-lived objects will still run into their memory
limits, even though the objects they allocate have all actually been garbage-collected and the
memory returned to the system.

The garbage collector runs in its own thread and collects objects from all untrusted code running
in the JVM, and will not necessarily know which application allocated a given object. For this
reason, we add a registerAllocation call after each allocation to associate the newly allocated
object with an account. The registerAllocation method creates a WeakReference to the
object and then registers that reference with a thread local ReferenceQueue. We maintain a
mapping of WeakReferences to the allocation size in bytes of the referenced object. To
determine this size, we maintain a thread local stack of allocation sizes which has a size pushed
upon a call to checkAllocation and popped upon a call to registerAllocation.

Since allocations and registrations should be properly nested, this allows us to obtain the
correct allocation size for a registered object without recalculation. When the garbage collector
frees the object, the WeakReference will be inserted into the ReferenceQueue. When
withdrawing bytes from an account that is approaching its allocation limit, we process the
elements inserted into the ReferenceQueue and deposit bytes back into the account. To help
the application avoid running out of memory, we also add a call to System.gc() whenever an
account has used up 3/4ths of its available memory. This logic is contained in
runtime/AllocatableResource.java.

Example (GC - Pass)

// This allocates a large number of short lived LinkedList objects.

// Since only one LinkedList object is reachable at a time, the

// short-lived objects will be garbage collected and the

// untrusted code will not run out of memory.

LinkedList<Object> list = new LinkedList<Object>();

for (int i = 0; i < 1000000; i++) {

 list = new LinkedList<Object>();

}

Example (GC - Fail)

// This allocates a chain of LinkedList objects. Since each object

// remains reachable, the garbage collector will not free them,

// causing the untrusted code to run out of memory.

LinkedList<Object> list = new LinkedList<Object>();

for (int i = 0; i < 1000000; i++) {

 LinkedList<Object> prev = list;

 list = new LinkedList<Object>();

 list.add(prev);

}

4 Instruction Counting
The instruction counting instrumentation in TWMAS prevents untrusted code from consuming
unbounded compute time, like an infinite loop or more sophisticated CPU-intensive code would,
and allows for finer granularity of control over the allowed runtime of untrusted code. Other
applications of the instruction counting instrumentation include systems for monetizing or
sharing CPU time, and for benchmarking the performance of algorithms.

In order to do this, we pepper the instrumented code with checkInstructionCount() method
calls. The method call to checkInstructionCount() contains a single argument: the number
of instructions to be executed in the next block of untrusted code. The
checkInstructionCount() method checks if this count exceeds the allotted account for the

untrusted code. If the limit has been reached, an exception will be thrown which will abort
execution of the untrusted code and return control to the host.

How
We chose to place the instruction count checks before untrusted code basic blocks for
correctness and performance reasons, at the price of some code complexity. This approach
requires two passes of the target bytecode -- one for analysis and one for instrumentation --
whereas the alternative of placing checks after basic blocks can be implemented with a single
pass of the target bytecode. However, placing instruction count checks before has the
advantage of never executing code that will exceed the instruction count limit, which is correct in
that the account will never be overrun. A maliciously engineered long block of instructions also
will be caught ahead of time and not executed, leading to less wasted computational resources
and better performance in those cases.

The instruction count instrumentation operates on a method-by-method basis, within each class
loaded through our custom class loader. The first pass over the target bytecode identifies the
boundaries of basic blocks, the instruction counts within them, and which labels are actual jump
targets. A boundary can be the start of the method, a label (which can be branch, switch, or
try-catch-finally targets), or a control flow change (such as a method invocation, a
conditional/unconditional branch, switch statement, or a return). These boundaries mark the
entry points in the target code, and are the locations where instruction count checks should be
inserted to correctly count the actual instructions executed during runtime.

The second pass over the target bytecode interprets the same boundaries, but instead of
recording instruction counts between them, inserts checkInstructionCount() calls with the
recorded instruction count for the following basic block. The first call is placed at the start of the
method, and requires the count for the following basic block for the argument, which is why this
approach requires the first pass of analysis. The next call is placed at the next observed basic
block demarcation, using the instruction count for the following basic block for the argument,
and so on.

The third piece of information recorded during the first pass of analysis over the target bytecode
is used as a performance optimization during the second pass instrumentation. Not all JVM
bytecode labels are targets of conditional/unconditional branches, switch statements, or
try-catch-finally blocks -- some are debugging line number annotations, and others may refer to
variables -- so not all labels are necessarily entry points in the target code. The first pass builds
a list of labels it observes to be actual jump targets, that is, labels that are explicitly encoded in a
branch statement, switch statement, or a try-catch-finally block definition. When inserting a
checkInstructionCount() call at an entry point boundary, the second pass uses this list to
collapse consecutive basic blocks that are demarcated by a non-jump-target label, so that only
a single call to checkInstructionCount() is inserted for every block of consecutively
executed instructions. This reduces the overhead of our instrumentation, and improves

performance of the target bytecode.

Example
The examples below illustrate the information collected during the first pass analysis and the
resulting bytecode after the second pass instrumentation.

========== Original Java Source ==========

public class EvilCode {

 public static void main() {

 int x;

 /* Evil infinite loop */

 while (true) {

 x = 1;

 }

 }

}

========== ANALYZING EvilCode9main()Vnull ==========

/// Boundary: Start of Method, Count: 0 ///

 L0

/// Boundary: Label, Count: 0 ///

 LINENUMBER 6 L0

 ICONST_1

 ISTORE 0

 GOTO L0 JumpTargetList += [L0]

/// Boundary: Branch, Count: 3 ///

 MAXSTACK = 1

 MAXLOCALS = 1

JumpTargetList: [L0, L3]

========== INSTRUMENTING EvilCode9main()Vnull ==========

 L0

--> SIPUSH 3

--> INVOKESTATIC sandbox/runtime/Recorder.checkInstructionCount (I)V

 LINENUMBER 6 L0

 * ICONST_1

 * ISTORE 0

 * GOTO L0

 MAXSTACK = 1

 MAXLOCALS = 1

5 Compatibility
Apart from a number of toy programs that unit-test the functionality of TWMAS (infinite loops,
allocating enormous arrays, trying to write to files) we have successfully used TWMAS to run
Mozilla Rhino, a JavaScript interpreter written for the JVM. Rhino is packaged by default with
most Java installations, and represents a project of considerable size and complexity.

We have unit tests which successfully demonstrate the usage of TWMAS to limit the execution
of malicious JavaScript code running in Rhino. Both a JavaScript infinite loop as well as
JavaScript unbounded allocation in memory are both successfully blocked by TWMAS, while
other less-resource-hungry scripts execute perfectly

6 Future Work

Bugs
There are still a number of outstanding bugs that need to be worked out. Some of them are due
to the large number of (often undocumented) special cases in the JVM, some are due to the
difficulty in avoiding re-entrant behavior, some are due to the intricacies of the java
ClassLoaders, some are due to incompatibilities between different versions of the JVM. In
particular:

●​ The Rhino JavaScript interpreter seems to behave inconsistently on our different
machines: It works perfectly on Windows, but on Ubuntu it occasionally fails to provide
an interpreter when getEngineByName(“JavaScript”) is called, instead producing
null.

●​ The InfiniteCatch unit test, which tests the ability for the instrumentation to break out
of multiple enclosing try{...}catch{...} blocks, so far fails to do so. We believe that
it is possible: every time the untrusted code jumps to a catch{...} block it should
immediately throw an new exception and jump to a higher catch{...} block, and there
can only be a finite number of these so it will have to return control to the Host.

●​ There is no accounting for native calls. For example, System.arraycopy() could
perform a large amount of work, but currently counts as one instruction.

Additional Features
●​ Another approach to resource access control would be to stub out existing system

libraries used to access sensitive resources. This would give the sandbox complete
control over when and how system operations occur. For example, this approach would
allow us to create a virtual file system by modifying all file paths to point to a path within
the virtual root. However, this approach does require stubbing out all possibly sensitive
libraries with our own “safe” versions. We did experiment with this approach, creating
safe versions for several system libraries accessing files. However, covering all possible

libraries is an extensive task we considered too large a scope for this project, and we
leave it for future work. Instead we primarily rely on Java’s SecurityManager class.

●​ Fully measure the performance implications of TWMAS. By instrumenting the bytecode
and adding SecurityManager checks, the runtime of untrusted code should increase.
However, the amount by which this increases is currently uncertain.

●​ Allow a greater range of Java applications to run within the sandbox. For example,
applications JRuby and Jython make heavy usage of runtime bytecode generation which
is not supported by TWMAS. In theory, it should be possible to intercept this bytecode
and instrument it while still allowing these applications to run.

7 Conclusion
TWMAS thus provides a way for a developer to run untrusted code on the JVM without worrying
about the code “running away” and failing to terminate or exhausting the memory pool. This is
done in pure Java, allowing us to avoid using non-portable OS level functionality (processes,
users, groups) or having to embed an interpreter into our Java application to run untrusted code.

As it stands, the code is a prototype. All the bugs mentioned above all still exist. Our
blanket-ban on any sort of dangerous calls throughout the entire process makes it difficult to
perform any useful work using the sandbox, as that requires somehow communicating with the
outside world. Furthermore, we have not yet investigated ways to improve the performance of
instrumented code. Currently, the inserted checks cause instrumented code to run noticeably
slower.

Nonetheless, we believe that TWMAS sandbox shows a great deal of potential. It provides
capabilities which are hitherto unheard of: a granularity of individual instructions when
controlling the CPU-usage of an untrusted piece of code, as well as controlling the memory
allocation down the individual bytes, all while running at “native” speed on the JVM.

	The World’s Most Advanced Sandbox™
	
	What

	2 SecurityManager
	simple_example.policy

	3 Memory Counting
	How
	Calculating Allocation Size
	Example (Object Allocation)
	Example (Arrays)
	
	Example (Special Methods)
	Object registration
	
	
	Example (GC - Pass)
	Example (GC - Fail)

	
	4 Instruction Counting
	How
	
	Example

	
	5 Compatibility
	6 Future Work
	Bugs
	Additional Features

	7 Conclusion

