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Abstract 
To safely run untrusted Java code, the untrusted code should be sandboxed. Traditional 
sandboxes rely on non-portable operating system facilities to run the code in separate 
processes with restricted privileges, which may also incur a high performance overhead. In this 
report, we introduce TWMAS, a sandbox that does not make use of the operating system. 
Instead, it uses the Java SecurityManager and instruction-rewriting to safely sandbox untrusted 
code directly running within a single host Java Virtual Machine. 
 
1 Introduction 
The World’s Most Advanced Sandbox™ (TWMAS) is a portable sandbox designed to safely run 
untrusted Java bytecode. Unlike traditional sandboxes, many of which use non-portable 
operating system (OS) facilities to run the untrusted code in a separate process with restricted 
privileges, TWMAS does not make use of the OS. Rather, it provides a way for a host Java 
Virtual Machine (JVM) to execute untrusted code directly, using the Java SecurityManager to 
block access to dangerous capabilities (Filesystem, Network, System, etc.) and 
instruction-rewriting in order to bound the number of bytes of memory allocated and the number 
of instruction executed. 
 
Since Java applications run on a virtual machine, there already exists ways to limit the 
capabilities of untrusted code. For example, the SecurityManager can be used to assign 
Unix-like permissions to an application, limit access to the network, and block dangerous system 
calls. However, it does not provide a way to limit the CPU usage or memory allocations 
performed by any section of untrusted code within a single JVM.  
 
The traditional way to impose these limits is to run the untrusted code in a separate JVM. 
However, it can take on the order of hundreds of milliseconds to spawn a new JVM, which is a 
significant overhead when running a large number of small untrusted functions.  
 
In order to run untrusted code within a single process one needs a means of limiting the amount 
of memory it can allocate to prevent it from crashing the process. Similarly, if running the 
untrusted code within the same thread, we need a way of ensuring it eventually returns control 
back to the host and does not loop forever. 

 



What 
At it’s heart, TWMAS provides a novel primitive that an application developer can use to run 
untrusted code: 
 

run(Runnable untrusted, long maxMemory, long maxInstructions) 

 

This method is called by the host process, and will execute the untrusted Runnable with a 
limited number of instructions it can execute and a limited amount of memory it can allocate. If 
the untrusted Runnable overshoots these limits, a ResourceLimitException is thrown, e.g. 
 
sandbox.runtime.ResourceLimitException: Too Much Instructions Use! Additional 

3 + existing 49999 would exceed maximum 50000 

 
This will return control back to the host, who can catch the exception and resume. This prevents 
the untrusted code from looping forever, or allocating memory until the process fails. 
 
These limits are imposed by re-writing the instructions of the untrusted code, as well as any 
code that it touches (i.e. imported Java libraries), to insert resource accounting checks into the 
untrusted code, thereby forcing it to keep track of the number of instructions and the amount of 
memory it has used. The rewriting happens at class load-time through the Java Instrumentation 
API. All code which runs on our instrumented JVM is associated with an Account object, which 
keeps track of the maximum resources the code is allowed to consume. 
 
In this way, we are able to safely load untrusted Java binaries into our application, and run them 
directly, while being confident that this untrusted code cannot do anything that could possible 
harm or compromise the Host JVM. 
 
Roadmap 
In this report, we document the details of TWMAS. In Section 2, we show how to enforce 
resource access control using the Java SecurityManager. Section 3 describes limiting memory 
usage, while Section 4 describes limiting number of instructions executed. We discuss TWMAS 
compatibility considerations in Section 5, and future works in Section 6. We make concluding 
remarks in Section 7. 

2 SecurityManager 
Untrusted code should not have arbitrary access to system resources or system operations. For 
example, the untrusted code should not be able to arbitrarily read or write to files in the file 
system, connect to sockets, spawn threads, kill a process, or change the current permissions 
settings. Our sandbox must mediate access to these resources, only allow accesses specifically 

http://docs.oracle.com/javase/6/docs/api/java/lang/instrument/Instrumentation.html
http://docs.oracle.com/javase/6/docs/api/java/lang/instrument/Instrumentation.html


granted, and blocking all others. 
 
How 
Java’s SecurityManager is a class that allows an application to implement an access control 
security policy. A policy file defines the policy, a whitelist of fine-grained permissions to access 
resources. When an application instantiates the SecurityManager, it passes as an argument 
the path to the policy file. From then on, the SecurityManager enforces access control as 
defined by the policy on all code executed within the same JVM. Note this means that there is a 
single SecurityManager instance per JVM. Additionally, since the policy is a whitelist, all 
resource access will be restricted unless specifically granted. Below is a simple example policy, 
allowing only reads from test.txt and socket connections only to localhost on port 7777. 

simple_example.policy 
 

grant { 

permission java.io.FilePermission "test.txt", "read"; 

​ ​ permission java.net.SocketPermission "localhost:7777", "connect"; 

}; 

 
 
In TWMAS, we instantiate the SecurityManager after compiling the untrusted code, but before 
executing it with run(). The primary reason for this order is to avoid adding extra permissions 
needed by the compiler to the policy. This means the policy can instead simply define the 
permissions only granted to the untrusted code. Note that deleting an instance of the 
SecurityManager or changing the permissions requires its own special permission. By not 
granting the untrusted code these permissions, the sandboxed code cannot modify its access 
control permissions and will be restricted to the defined policy. Thus, by using Java’s built-in 
SecurityManager, TWMAS is able to enforce fine-grained access control to system resources 
and operations.  

3 Memory Counting 
Memory accounting is the mechanism by which we limit how much memory a section of 
untrusted code can allocate. At a high level, TWMAS assigns an Account object to each section 
of untrusted code, which specifies limits on memory usage (and number of instructions, 
described later). We insert accounting checks before each bytecode instruction that allocates 
memory. The Account object tracks how much memory has been allocated and prevents the 
allocation if the limit has been reached. 

How 
We consider four different bytecode instructions which can allocate memory. The NEW 



instruction which allocates memory for an object of a given class, the NEWARRAY instruction 
which allocates memory for a new one-dimensional array of a given type, the MULTIANEWARRAY 
instruction which allocates memory for a new multi-dimensional array, and the INVOKEVIRTUAL, 
INVOKESTATIC instructions which allocate memory as the result of the method calls 
Object.clone() and Array.newInstance(). Prior to each instruction that allocates memory 
we insert an INVOKESTATIC instruction that calls the Recorder.checkAllocation method. The 
checkAllocation method calculates the allocation size, and then withdraws bytes from the 
untrusted code’s account. If there are insufficient bytes in the account, then a 
ResourceLimitException is thrown. 
 

Calculating Allocation Size 
For the NEW instruction, the checkAllocation method is called with a String argument that 
stores the name of the allocated object’s class. We estimate the amount of memory needed to 
allocate an object of a given class using a global map of classes to their field counts. Since 
some classes may not be loaded until after the NEW instruction, it is sometimes necessary to 
load the class for analysis during the checkAllocation() call to determine the field count. 
Once the class’s field count is obtained, we estimate the size of the object to be 8 * numFields 
bytes. 
 

Example (Object Allocation) 
// Has 7 fields, should withdraw 8 * 7 bytes. 
String s = new String(); 

 
For the NEWARRAY and MULTIANEWARRAY instructions, the checkAllocation() method is called 
with the size of the primitive type being allocated and the dimensions of the array. During 
instrumentation, we map each primitive type (double, int, char, etc.) to its size in bytes. The size 
of object references may vary depending on the JVM, so we estimate their size to be 8 bytes.  
 

Example (Arrays) 
// Should withdraw 4 * 1000 bytes. 
int prepareForTrouble = new int[1000]; 

 

// Should withdraw 8 * 1000 * 1000 bytes. 

double[][] makeItDouble = new double[1000][1000]; 

 
 
Finally, we consider the INVOKESTATIC and INVOKEVIRTUAL instructions which can allocate 
memory when invoking the Array.newInstance and Object.clone methods. 
 



 

Example (Special Methods) 
// Should withdraw 10 * 8 bytes 
java.lang.reflect.Array.newInstance(Object.class, 10); 

 

// Should withdraw 100 * 8 bytes 

long[] sheep = new long[100]; 

 

// Should withdraw sizeOf(sheep) bytes 

long[] dolly = sheep.clone(); 

 

Object registration 
Many Java applications create a large number of short lived objects which are collected by the 
JVM’s garbage collector. In order to support these applications, we deposit bytes back into the 
untrusted code’s account when one of its objects is freed by the garbage collector. If we do not 
do this, code which allocates a large number of short-lived objects will still run into their memory 
limits, even though the objects they allocate have all actually been garbage-collected and the 
memory returned to the system. 
 
The garbage collector runs in its own thread and collects objects from all untrusted code running 
in the JVM, and will not necessarily know which application allocated a given object. For this 
reason, we add a registerAllocation call after each allocation to associate the newly allocated 
object with an account. The registerAllocation method creates a WeakReference to the 
object and then registers that reference with a thread local ReferenceQueue. We maintain a 
mapping of WeakReferences to the allocation size in bytes of the referenced object. To 
determine this size, we maintain a thread local stack of allocation sizes which has a size pushed 
upon a call to checkAllocation and popped upon a call to registerAllocation.  
 
Since allocations and registrations should be properly nested, this allows us to obtain the 
correct allocation size for a registered object without recalculation. When the garbage collector 
frees the object, the WeakReference will be inserted into the ReferenceQueue. When 
withdrawing bytes from an account that is approaching its allocation limit, we process the 
elements inserted into the ReferenceQueue and deposit bytes back into the account. To help 
the application avoid running out of memory, we also add a call to System.gc() whenever an 
account has used up 3/4ths of its available memory. This logic is contained in 
runtime/AllocatableResource.java. 
 

 



 

Example (GC - Pass) 
 
// This allocates a large number of short lived LinkedList objects. 

// Since only one LinkedList object is reachable at a time, the  

// short-lived objects will be garbage collected and the  

// untrusted code will not run out of memory. 

LinkedList<Object> list = new LinkedList<Object>(); 

for (int i = 0; i < 1000000; i++) { 

  list = new LinkedList<Object>(); 

} 

Example (GC - Fail) 
 
// This allocates a chain of LinkedList objects. Since each object 

// remains reachable, the garbage collector will not free them, 

// causing the untrusted code to run out of memory. 

LinkedList<Object> list = new LinkedList<Object>(); 

for (int i = 0; i < 1000000; i++) { 

  LinkedList<Object> prev = list; 

  list = new LinkedList<Object>(); 

  list.add(prev); 

} 

 

4 Instruction Counting 
The instruction counting instrumentation in TWMAS prevents untrusted code from consuming 
unbounded compute time, like an infinite loop or more sophisticated CPU-intensive code would, 
and allows for finer granularity of control over the allowed runtime of untrusted code. Other 
applications of the instruction counting instrumentation include systems for monetizing or 
sharing CPU time, and for benchmarking the performance of algorithms. 
 
In order to do this, we pepper the instrumented code with checkInstructionCount() method 
calls. The method call to checkInstructionCount() contains a single argument: the number 
of instructions to be executed in the next block of untrusted code. The 
checkInstructionCount() method checks if this count exceeds the allotted account for the 



untrusted code. If the limit has been reached, an exception will be thrown which will abort 
execution of the untrusted code and return control to the host. 

How 
We chose to place the instruction count checks before untrusted code basic blocks for 
correctness and performance reasons, at the price of some code complexity. This approach 
requires two passes of the target bytecode -- one for analysis and one for instrumentation -- 
whereas the alternative of placing checks after basic blocks can be implemented with a single 
pass of the target bytecode. However, placing instruction count checks before has the 
advantage of never executing code that will exceed the instruction count limit, which is correct in 
that the account will never be overrun. A maliciously engineered long block of instructions also 
will be caught ahead of time and not executed, leading to less wasted computational resources 
and better performance in those cases. 
 
The instruction count instrumentation operates on a method-by-method basis, within each class 
loaded through our custom class loader. The first pass over the target bytecode identifies the 
boundaries of basic blocks, the instruction counts within them, and which labels are actual jump 
targets. A boundary can be the start of the method, a label (which can be branch, switch, or 
try-catch-finally targets), or a control flow change (such as a method invocation, a 
conditional/unconditional branch, switch statement, or a return). These boundaries mark the 
entry points in the target code, and are the locations where instruction count checks should be 
inserted to correctly count the actual instructions executed during runtime. 
 
The second pass over the target bytecode interprets the same boundaries, but instead of 
recording instruction counts between them, inserts checkInstructionCount() calls with the 
recorded instruction count for the following basic block. The first call is placed at the start of the 
method, and requires the count for the following basic block for the argument, which is why this 
approach requires the first pass of analysis. The next call is placed at the next observed basic 
block demarcation, using the instruction count for the following basic block for the argument, 
and so on. 
 
The third piece of information recorded during the first pass of analysis over the target bytecode 
is used as a performance optimization during the second pass instrumentation. Not all JVM 
bytecode labels are targets of conditional/unconditional branches, switch statements, or 
try-catch-finally blocks -- some are debugging line number annotations, and others may refer to 
variables -- so not all labels are necessarily entry points in the target code. The first pass builds 
a list of labels it observes to be actual jump targets, that is, labels that are explicitly encoded in a 
branch statement, switch statement, or a try-catch-finally block definition. When inserting a 
checkInstructionCount() call at an entry point boundary, the second pass uses this list to 
collapse consecutive basic blocks that are demarcated by a non-jump-target label, so that only 
a single call to checkInstructionCount() is inserted for every block of consecutively 
executed instructions. This reduces the overhead of our instrumentation, and improves 



performance of the target bytecode. 

 

Example 
The examples below illustrate the information collected during the first pass analysis and the 
resulting bytecode after the second pass instrumentation. 
 
========== Original Java Source ========== 

 

public class EvilCode { 

    public static void main() { 

        int x; 

        /* Evil infinite loop */ 

        while (true) { 

            x = 1; 

        } 

    } 

} 

 

========== ANALYZING EvilCode9main()Vnull ========== 

 

/// Boundary: Start of Method, Count: 0 /// 

   L0 

/// Boundary: Label, Count: 0 /// 

    LINENUMBER 6 L0 

    ICONST_1 

    ISTORE 0 

    GOTO L0                            JumpTargetList += [L0] 

/// Boundary: Branch, Count: 3 /// 

    MAXSTACK = 1 

    MAXLOCALS = 1 

 

JumpTargetList: [L0, L3] 

 

========== INSTRUMENTING EvilCode9main()Vnull ========== 

 

       L0 

--> SIPUSH 3 

--> INVOKESTATIC sandbox/runtime/Recorder.checkInstructionCount (I)V 

        LINENUMBER 6 L0 

     *  ICONST_1 

     *  ISTORE 0 

     *  GOTO L0 

        MAXSTACK = 1 

        MAXLOCALS = 1 



 



5 Compatibility 
Apart from a number of toy programs that unit-test the functionality of TWMAS (infinite loops, 
allocating enormous arrays, trying to write to files) we have successfully used TWMAS to run 
Mozilla Rhino, a JavaScript interpreter written for the JVM. Rhino is packaged by default with 
most Java installations, and represents a project of considerable size and complexity. 
 
We have unit tests which successfully demonstrate the usage of TWMAS to limit the execution 
of malicious JavaScript code running in Rhino. Both a JavaScript infinite loop as well as 
JavaScript unbounded allocation in memory are both successfully blocked by TWMAS, while 
other less-resource-hungry scripts execute perfectly 

6 Future Work 

Bugs 
There are still a number of outstanding bugs that need to be worked out. Some of them are due 
to the large number of (often undocumented) special cases in the JVM, some are due to the 
difficulty in avoiding re-entrant behavior, some are due to the intricacies of the java 
ClassLoaders, some are due to incompatibilities between different versions of the JVM. In 
particular: 

●​ The Rhino JavaScript interpreter seems to behave inconsistently on our different 
machines: It works perfectly on Windows, but on Ubuntu it occasionally fails to provide 
an interpreter when getEngineByName(“JavaScript”) is called, instead producing 
null. 

●​ The InfiniteCatch unit test, which tests the ability for the instrumentation to break out 
of multiple enclosing try{...}catch{...} blocks, so far fails to do so. We believe that 
it is possible: every time the untrusted code jumps to a catch{...} block it should 
immediately throw an new exception and jump to a higher catch{...} block, and there 
can only be a finite number of these so it will have to return control to the Host. 

●​ There is no accounting for native calls. For example, System.arraycopy() could 
perform a large amount of work, but currently counts as one instruction. 

Additional Features 
●​ Another approach to resource access control would be to stub out existing system 

libraries used to access sensitive resources. This would give the sandbox complete 
control over when and how system operations occur. For example, this approach would 
allow us to create a virtual file system by modifying all file paths to point to a path within 
the virtual root. However, this approach does require stubbing out all possibly sensitive 
libraries with our own “safe” versions. We did experiment with this approach, creating 
safe versions for several system libraries accessing files. However, covering all possible 



libraries is an extensive task we considered too large a scope for this project, and we 
leave it for future work. Instead we primarily rely on Java’s SecurityManager class. 

●​ Fully measure the performance implications of TWMAS. By instrumenting the bytecode 
and adding SecurityManager checks, the runtime of untrusted code should increase. 
However, the amount by which this increases is currently uncertain. 

●​ Allow a greater range of Java applications to run within the sandbox. For example, 
applications JRuby and Jython make heavy usage of runtime bytecode generation which 
is not supported by TWMAS. In theory, it should be possible to intercept this bytecode 
and instrument it while still allowing these applications to run. 

7 Conclusion 
TWMAS thus provides a way for a developer to run untrusted code on the JVM without worrying 
about the code “running away” and failing to terminate or exhausting the memory pool. This is 
done in pure Java, allowing us to avoid using non-portable OS level functionality (processes, 
users, groups) or having to embed an interpreter into our Java application to run untrusted code. 
 
As it stands, the code is a prototype. All the bugs mentioned above all still exist. Our 
blanket-ban on any sort of dangerous calls throughout the entire process makes it difficult to 
perform any useful work using the sandbox, as that requires somehow communicating with the 
outside world. Furthermore, we have not yet investigated ways to improve the performance of 
instrumented code. Currently, the inserted checks cause instrumented code to run noticeably 
slower. 
 
Nonetheless, we believe that TWMAS sandbox shows a great deal of potential. It provides 
capabilities which are hitherto unheard of: a granularity of individual instructions when 
controlling the CPU-usage of an untrusted piece of code, as well as controlling the memory 
allocation down the individual bytes, all while running at “native” speed on the JVM.  
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