
UNIX Shell
●​ Why:

○​ Ideal for Working with folders/files & Big Data
●​ Files & Directories:

○​ Filesystem = Organizes data into files (folders)
■​ Root = top directory. Indicated by /
■​ Below that any subfolders ex: /users/____

○​ Commands:
■​ $ = command line where to type commands
■​ whoami = username, current user (runs small program then returns to

prompt)
■​ pwd = to know current location/path (print working directory)
■​ ls = Looking at content w/in fs. Prints names of files & directories in

alphabetical order.
■​ ls ____ = ls + foldermame
■​ ls -F = organizes by folders
■​ ls -F desktop = view contents of desktop
■​ ls -a = SHOW ALL (hidden folders, ./, .//)
■​ cd ____ = (Change Directory) Change location; go to certain folder ex: cd

sd-workshop
■​ cd / = to root folder
■​ cd ~ or cd = to home directory
■​ cd() = Type first few letters then TAB does auto-complete. Shortcut to

typing folder names
■​ cd . = current working directory
■​ cd .. = takes you back one level. Parent of current directory.
■​ mkdir = Make directory. Make new folder
■​ Creating new file:

●​ Program name + space + filename
○​ Ex: notepad draft.txt
○​ *Note: Typing notepad.draft.tx & ← Allows you to edit

document & still work in the terminal
■​ rm ____ = remove or delete ex: rm draft.txt

●​ Only works on files, not directories
■​ rmdir ____ = removes directories

●​ Cannot remove if file within
●​ May use rm thesis/draft.txt

■​ mv = rename (move)
●​ Ex: mv thesis/draft.txt thesis/quotes.txt

■​ mv . = move a file from directory it was in, into current
●​ Ex: mv thesis/quotes.txt .

■​ cp = copies file instead of moving it
●​ Ex: cp quotes.txt thesis/quotations.txt

●​ Show changes: Ls quotes.txt thesis/quotes.txt thesis/quotations.txt
■​ wc = wordcount

●​ Ex: wc *.pdb ← asterisk tells shell to read all files with that
extension

●​ Outputs columns: 1 number of lines 2 wordcount 3 characters
■​ wc -l = line count only

●​ Ex: wc -l *.pdb
■​ wc -l > = outputs info to new file

●​ Ex: wc -l *.pdb > lengths.txt
■​ wc*.txt|wc = counts number of lines calculated after wc the files
■​ > = redirects output to new file

●​ Ex: wc -l *.pdb > lengths.txt
■​ cat = concatenate. Prints contents of file 1 after another. Shows script

contents.
●​ Ex: cat lengths.txt

■​ sort
●​ Ex: sort -n lengths.txt (n for numeric)
●​ Sorts from smallest to largest
●​ Save sorted list into new file:

○​ sort -n lengths.txt > sorted-lengths.txt
■​ head -# = pulls first few lines within file

●​ Ex: head -1 sorted-lengths.txt
●​ Ex: head -n 1 (same thing)
●​ Shows only the first line of the file
●​ Output of sorted list here shows shortest file

■​ tail = pulls last lines within file
●​ Ex: tail - 5 sorted-lengths.txt

■​ | = Pipe. Keeps each command in memory & combines them. Runs one
command instead of executing one at a time. Tells shell we want to use
output of command on LEFT (sort) as input to command on RIGHT
(head)

●​ Take original wc & sort numerically
●​ Ex: wc -1 *.pdb | sort -n | head -1

■​ man = Manual command. type man then command you want more info
about

●​ In Windows: --help
●​ Ex: wc --help

■​ ls = can be used to search within filenames as well
●​ Ex: ls *Z.txt

●​ Loops
○​ View first 3 lines of 2 files:

■​ For filename in basilisk.dat unicorn.dat
■​ > do
■​ > head -n 3 $filename
■​ > done

○​ Print first 100 lines & last 20 lines of files
■​ For filename in *.dat
■​ >Do
■​ >​ Echo $filename
■​ >​ Head -n 100 $filename | tail -n 20
■​ >Done

●​ (Echo prints parameters to output)
○​ Rename multiple file names

■​ For filename in *.dat
■​ >Do
■​ >​ Cp $filename original-$filename
■​ >Done

●​ Output: basilisk.dat, original-basilisk.dat
○​ Create loop with only certain file types desired

■​ For datafile in *[AB].txt
■​ >do
■​ >​ echo $datafile
■​ >done

●​ Brackets indicate OR in between, not AND
●​ If A then B or C, could do A[B] or A[C]

○​ Prefix each with stats
■​ For datafile in *[AB].txt
■​ >Do
■​ >​ Echo $datafile stats-$datafile
■​ >Done

○​ Running program or script that is processing files and outputs
■​ For datafile in *[AB].txt
■​ >Do
■​ >​ Echo $datafile stats-$datafile
■​ >​ bash goostats
■​ >Done

●​ Exercises
○​ Question: Absolute vs relative paths

■​ Starting from /users/amanda/data, which commands could she use to
navigate to home directory, which is /users/amanda?

●​ 5. cd ~
●​ 8. cd
●​ 9. cd ..

○​ Question: Renaming files

■​ Suppose you created a .txt file in your current dir to contain a list of stat
tests named statstics.txt. You realized you mispelled & want to correct,
you can use:

●​ mv statstics.txt statistics.txt
●​ cp statstics.txt statistics.txt ← will keep old incorrect file

■​ In current dir, want to find 3 files which have least # of lines. Which
command would work?

●​ wc -l* | sort -n | head -n 3
○​ Wordcount with lines, sort, then head 3 for top 3 lines

○​ Variables in Loops:
■​ Loop 1:

●​ for datafile in *.dat
●​ >do
●​ >​ ls *.dat
●​ >done

○​ Output:
■​ basilisk.dat unicorn.dat
■​ basilisk.dat unicorn.dat

■​ Loop 2:
●​ for datafile in *.dat
●​ >do
●​ >​ ls $datafile
●​ >done

○​ Output:
■​ Basilisk.dat
■​ unicorn.dat

■​ Why are these 2 different?
●​ Loop 1, las *.dat processes dat files (multiple)
●​ Loop 2 processes 1 at a time (only the 2)

PYTHON

●​ Shift + Enter for initializing command (running cell)
●​ Commands:

○​ import numpy = Import directory. Able to read in csv files
○​ numpy.loadtxt() = fn call. Runs loadtxt. Numpy is the thing, file is loadtxt.

■​ Numpy turns data into matrix
■​ Delimiter separates elements by ,
■​ Ex: numpy.loadtxt(fname='inflammation-01.csv', delimiter = ',')

○​ ___ = variable = Create variables
■​ Must start with letter
■​ Ex: weight_kg = 55​

○​ print() = prints variables
■​ Ex: print(weight_kg)
■​ Python2: NO PARENTHESIS

●​ Print weight_kg
○​ ___? = help with function

■​ Ex: print?
○​ print(data)

■​ matrix
○​ print(type(data))

■​ Shows type
○​ print(data.shape)

■​ Gives length
○​ ATTRIBUTE

■​ don’t need parenthesis
■​ Ex: print(data.shape)

○​ PARENTHESIS
■​ used when calling a function

○​ Load array as variable:
■​ Ex: data = numpy.loadtxt(fname = 'inflammation-01.csv', delimiter=’,’)

○​ Indexing:
■​ STARTS AT ZERO
■​ Array shows UP TO but NOT EQUAL to
■​ Ex: data[0:4,0:10]

●​ Rows 0, 1, 2, 3
●​ Columns 0 through 9

■​ Use colons instead, assumes 0
●​ Ex: data[:4,:10]

○​ Axes:
■​ 0 = down columns (col)
■​ 1 = across columns (rows)

○​ Example:
■​ Doubledata = data * 2.0

●​ Multiplies all by 2
■​ Doubledata[:3, 36:]

●​ Indexing rows 0 to 3 & rows 36 to end
■​ Tripledata = Doubledata + data

●​ Can add matrices since they’re the same size
■​ print Tripledata
■​ print data.mean()

●​ Mean is descriptive, itself is a function you can pass values into,
but here it will get the mean of ALL the values in the matrix

■​ Max, Min, Standard deviation:
●​ print 'maximum inflammation:', data.max()
●​ print 'minimumum inflammation:', data.min()
●​ print 'standard deviation', data.std()
●​ print(data.max(axis=0).shape)

■​ 2 ways of doing same thing:
●​ data.max() ← data is object
●​ numpy.max(data) ← data is argument being called

○​ Example (using program matplotlib.pyplot)
■​ import matplotlib.pyplot
■​ %matplotlib inline ← create image
■​ image = matplotlib.pyplot.imshow(data)

●​ Shows entire plot of data
■​ ave_inflammation = data.mean(axis=0)

●​ Creates variable for axis 0
■​ ave_plot =

matplotlib.pyplot.plot(ave_inflammation)
●​ Plots subset of new variable

■​ matplotlib.pyplot.show(ave_plot)
●​ Shows

■​ max_plot =
matplotlib.pyplot.plot(data.max(axis=0))

■​ min_plot =
matplotlib.pyplot.plot(data.min(axis=0))

■​ std_inflammation =
matplotlib.pyplot.plot(data.std(axis=0))

●​ Slice = Section of array
○​ Example:

■​ element = 'oxygen'
■​ print 'first three character:', element[0:3]

■​ print 'last three characters:', element[3:6]
●​ Output:

○​ first three character: oxy​
last three characters: gen

○​ Example:
■​ element = 'oxygen'
■​ print 'first four character:', element[:4]
■​ print 'last four characters:', element[4:]
■​ print 'all characters:', element[:]

●​ Output:
○​ first four character: oxyg​

last four characters: en​
all characters: oxygen

○​ Examples:

■​ -# = gets back to elements
●​ Ex: element[-1] = n
●​ Ex: element[-2] = e
●​ Ex: element[1:-1] = xyge

○​ Goes from index 1 to index -1 from last
●​ Loops

○​ Example of bad way:
■​ word = 'tin'
■​ print word[0]
■​ print word[1]
■​ print word[2]
■​ print word[3]

●​ Get ERROR since
char dimension
mismatch, so we use a
LOOP instead

○​ Loop version:
■​ word = 'oxygen'
■​ for char in word:
■​ print char

●​ char = Defining loop variable
(arbitrary; could have called it anything
else)

○​ Example:
■​ length = 0
■​ for vowel in 'aeiou':
■​ length = length + 1
■​ print 'there are', length, 'vowels'

●​ Note: Loop variable exists after loop completes
○​ Example:

■​ letter = 'z'
■​ for letter in 'abc':
■​ print(letter)
■​ print 'after the loop, letter is',

letter
○​ Example:

■​ Using RANGE
●​ Range can accept 1 to 3

parameters.
●​ If there are 2 parameters, it indicates the range only

○​ Ex: (2,5) = 2, 3, 4
●​ If there are 3 parameters, it indicates 1. First value, 2. Last value,

3. Increment value
○​ Ex: (3, 10, 3) = 3, 6, 9

○​ Example:
■​ How can we create LOOP instead of

EXPONENTIATION? (5**3 = 125)
●​ result = 1
●​ for i in range(0,3):
●​ print i
●​ result = result * 5
●​ print result

○​

●​ Lists
○​ Can change elements in list, can’t do in a string.
○​ Commands:

■​ append = function that adds to end of list
●​ Ex: odds.append(11)
●​ Can also use +=

■​ delete
●​ Ex: del odds[0]

■​ reverse
●​ Ex: odds.reverse()

○​ Example:
■​ names = ['Newton', 'Darwing', 'Turing']
■​ print 'names is originally:', names
■​ names[1] = 'Darwin'
■​ print "final value of names:", names

●​ Names[1] indexes Darwing which is in index 1

○​ Example:
■​ odds = [1,3,5,7]
■​ primes = odds
■​ primes += [2]

●​ Adds 2 to end, shortcut append
■​ print 'primes', primes
■​ print 'odds', odds

○​ Example: How can you get the word hello to print as a list: ‘h’ ‘e’ ‘l’ ‘l’ ‘o’
■​ Option 1:

●​ my_list = []
●​ for char in 'hello':
●​ my_list += char
●​ print my_list

■​ Option 2:
●​ my_list = []
●​ for char in 'hello':
●​ my_list.append(char)
●​ print my_list

■​ Option 3:
●​ my_list = []
●​ for char in 'hello':
●​ my_list += list(char)
●​ print my_list

Building programs with PYTHON part2

●​ Importing built-in package
○​ Import glob (global object)
○​ Inside is function called glob that is used for

matching
■​ Ex: glob.glob('inflammation*.csv')

●​ Grabs all inflammation files
●​ Outputs LIST of character strings

denoted by []
○​ Add Loop:

Data analysis
●​ Example:

○​ import numpy
○​
○​ count = 0
○​ for filename in

glob.glob('inflammation*.csv'):
○​ data = numpy.loadtxt(fname =

filename, delimiter=',')
○​ print filename, "mean is:", data.mean()
○​ count += 1
○​ print "number of files:", count

■​ Gives MEAN across entire matrix for
ea file

■​ Numpy program requires 2 input
arguments: filename, delimiter

●​ Example:
○​ import matplotlib.pyplot
○​ %matplotlib inline

●​ Save image add:

○​ fig = matplotlib.pyplot.savefig(filename + '.png') -or-
○​ fig = matplotlib.pyplot.savefig(filename.replace(‘csv’,’png’))

●​ Add count to bottom:
○​ print "number of files:", count

●​ Use Python to make CHOICES/decisions
○​ conditionals
○​ logical
○​ elseif

■​ elif = shorthand for elseif

●​ Check for suspicious looking data:

*Make loop to check all files!

Create Functions

●​ Temperature Conversion (F to K)
○​ def far_to_kelvin(temp)

■​ Def = definition
■​ () = where arguments go

○​ return ((temp - 32) * (5/9)) + 273.15
■​ Example:

●​ far_to_kelvin(82)
●​ = 273.15

●​ Challenge: Write a function called fence that takes 2 parameters & returns new string w/

wrapper as beginning & end
○​ def fence(original,wrapper):
○​ return wrapper + original +

wrapper

●​ Analyze Function:
def analyze(filename):

 #print(filename)

 data = numpy.loadtxt(fname = filename, delimiter = ',')

 fig = matplotlib.pyplot.figure(figsize = (10.0,3.0))

 #defining subplot in each figure space. 1 row, 3 plots in figspace
 #fig1 labels are arbitrary

 fig1 = fig.add_subplot(1,3,1)
 fig2 = fig.add_subplot(1,3,2)
 fig3 = fig.add_subplot(1,3,3)

 #set properties of graphs
 fig1.set_ylabel('average')
 fig1.plot(data.mean(axis=0))

 fig2.set_ylabel('max')
 fig2.plot(data.max(axis=0))

 fig3.set_ylabel('min')
 fig3.plot(data.min(axis=0))

 #figtight is cosmetic to automatically adjust spacing
 fig.tight_layout()

 #matplotlib.pyplot.show(fig) will populate new window
 fig = matplotlib.pyplot.savefig(filename + '.png')

●​ Detect problems function:

def detect_problems(filename):

 data = numpy.loadtxt(fname =filename, delimiter= ',')

 if data.max(axis=0)[0] == 0 and data.max(axis=0)[20] == 20:
 print 'suspicious looking max'
 elif data.min(axis = 0).sum() == 0:
 print 'minima add up to zero!'
 else:
 print 'seems ok'

●​ Challenge: Write a function called outer that returns a string made up of just the FIRST &
LAST characters of its input.

○​ Function:
■​ def outer(string):
■​ return

string[0]+string[-1]
○​ Call:

■​ print(outer('helium'))
○​ Output:

■​ hm

●​ ‘’’ = Docstring. Triple quotes. Used for multiple line strings

PANDAS

●​ import pandas = import program
●​ pandas.read_csv('A1_mosquito_data.csv') = tell which csv file to read in

○​ pandas.read + tab = can see all the ways to read in data

GIT & GITHUB

●​ Version Control
○​ In general, is the “lab notebook for the digital world”
○​ version control sys
○​ Useful working in TEAM, but also alone
○​ Used instead of having many copies of files, get to track changes
○​ Any file type
○​ Divergent = multiple people working on same doc
○​ Convergent = eventually merge back to same doc

●​ Terms
○​ Commit = New changes
○​ Repository = Storage area where tem stores full history, diff b/w files. Will only

see the one file, but can see changes within.
○​ VCS = Version control system - CVS, Subversion, RCS

■​ Using central server
○​ DVCS = Distributed Version control system - Git, Mercurial

■​ Distributed - no central server anymore. Repository created on your
laptop is the entire database. No dependencies - no internet or
connection to server needed.

GIT

●​ Configuration:
○​ git config --global user.name “ “ = Tell username

■​ Global - allows to use config for all projects
■​ (unless you want separate for work/personal/etc)

○​ git config --list or git config -l
■​ View settings

○​ git config --global user.email “ “ = Tell email address
○​ git config --global core.editor = Tell git which editor you want to use

■​ Doesnt bind you
■​ Create commit - if you dont enter a message, it will use this editor to open

& have you enter a message
■​ Any time git needs you to add input, but can use any text editor wanted

○​ git config --global core.autocrlf true = for Windows. Able to collaborate with
mac/windows

●​ Create Repository:
○​ Mkdir
○​ git init = Initializes for git use. If just created directory. Initialize empty git

repository
○​ ls -a = to see path & hidden files
○​ ls -la = to see files in list view, top to bottom

Git will recognize we created something new, and will tell us when they’re not committed. Must
add those files.

●​ STEPS:
○​ 1) Edit file
○​ 2) Add file to staging area (shopping cart)

■​ Git add (filename) = Adds file
○​ 3) Commit

■​ Git commit -m “start notes on Mars as a base”
●​ -m passes a message, want detailed, 50 character for good

practice
●​ General Commands:

○​ git status = can run anytime to see whats going on, where you are, hints as to
what to do next,

○​ git log = See commits/changes done so far
○​ git diff = looks at changes, recently committed & current file, shows difference

■​ Git diff (filename) = changes only within that file
○​ git reset (filename) = reset before all changes, use with caution
○​ git checkout (filename) = checks out MOST RECENTLY edited version, can go

back to others if specified
■​ HEAD = most recent commit. DEFAULT.
■​ ~ = Tilda is number of commits behind the head
■​ Git diff HEAD~ (filename) or Git diff HEAD~2 (filename)
■​ Git checkout HEAD mars.txt

○​ rmdir .git = removes directory from git
■​ If full, might have to force:
■​ Rm -rf .git

○​ touch = quick way to generate files if none found under that name
■​ Ex: touch a.dat b.dat c.dat results/a.out results/b.out

●​ Created 3 files in current dir & 2 files in results
○​ notepad .gitignore = creates files that tells git to ignore

■​ *Important to be in ROOT of projectx`x`
■​ Ex: Be in planets folder

○​ git status --ignored = shows everything being ignored w/o having to open the txt
file

○​ ! = exception. Ignore just one file but keep all others
■​ Ex: within .gitignore file
■​ *.dat
■​ !(filename) ← ignore all EXCEPT this one

○​ # = comments

Challenges
●​ Which command(s) would save changes of myfile.txt to local Git repo?

○​ Git add myfile.txt

○​ Git commit -m “my recent changes”
●​ How would you ignore a subdirectory?

○​ results/data
○​ results/plots

■​ Want to ignore just plots:
●​ .gitignore file with results/plots*

GITHUB

●​ Create repository
●​ Next screen: List of options to connect locally

○​ Able to dl GUI interface
○​ HTTPS - able to copy link
○​ Can push existing code (which we set up)
○​ Copy + paste code into command window

●​ Or from command line:
○​ Cd into directory
○​ Follow commands:

■​
●​ Pushing repository to github

○​ Git remote -v ← checks that connected
○​ Git push origin master ← sends contents of repository to github

■​ Inverse: if you have done this, someone else made changes, git origin
push & you dont have those changes, you can PULL

■​ Git pull origin master
○​ *Good practice to PULL before you PUSH*

●​ Pushing vs Committing
○​ Push = Globally
○​ Commit = Locally

