Exercise - JPA Entity Mappings -1

These exercises will investigate a great deal of the most useful Object-Entity mappings available in JPA. You
should, however, be aware of that the amount possible annotations are enormous. For this exercise we will
create the tables from the Entity classes, so we know exactly what we do. At the end, however, you should
create a new project and its entity classes from the tables generated by this exercise. This will show you a
great deal of those annotations we haven’t used (because we are using default values)

Getting Started

1) Create a new plain (Maven) java application, and add the packages: entity, test and enums

In the test package, add a class Tester including a main method. Create a test method in this class from
which we will do all interactions with the Entity Manager.

2) Create a local MySQL database

3a) Create an Entity class, Book with only one field (apart from the id) title. Use GenerationType.IDENTITY to
let the database generate ids automatically (using AUTO_INCREMENT).

Make sure you understand why you are requested to use GenerationType.IDENTITY and not one of the others.
3b) Include the MySQL JDBC Driver to the project. (if it wasn’t included in step 3a)

Right Click dependencies — Add Dependency — Type "mysgl-connector-java" in the Query Text Field —
Select-therrewest version 5.1.39 (will save your for a lot of time-zone related problems) of the Driver.

Open the pom-file to see how the dependency was added to the file.
3c) in your test method, create an EntityManager (use the slides if you need hints)

For all of these exercises, you should (initially, and ONLY initially) select the Drop and Create strategy in your
persistence.xml file:

Table Generation Strategy: (") Create (@) Drop and Create () Mone

3d) In the test package, add a new class SchemaBuilder and provide the class with a main(..) method.
Add this line to the method: Persistence.generateSchema("NAME_OF YOUR_PU", null);

You can recreate your database whenever you like, by running this method. But just using your
Entity-classes, will also create the database if Create or Drop and Create was chosen.

Auto-generation of Ids and MySQL's AUTO_INCREMENT

4) Add a few books to the project and verify that we can find them using the entity manager.

Verify that a matching table has been created, and populated with data.



Now, add a new folder “scripts” to "src/main/resources" as sketched to the i & Test Packages

right, and add a file data.sql to the folder. L Other Sources
=2
£ META-INF
Use plain SQL to insert a number of Books in the file as sketched below: =Nz Scripts

i [E] data.sql
INSERT INTO BOOK (TITLE) VALUES ('book-3");

SET @bookl = LAST INSERT ID();
INSERT INTO BOOK (TITLE) VALUES ('book-4"');
SET @book2 = LAST INSERT ID();

Add the following line to your persistence.xml file:

<property name="javax.persistence.sql-load-script-source" value="scripts/data.sql"/>
Re-run the project and observe/explain the id's found in the Book table.

5)

Add a new entity class Customer, initially only with a firstName and lastName property and using the
GenerationType.ldentity strategy.

Add the necessary SQL to the data.sql script to add a few customers.

Re-run the project and verify that you can find the new customers.

Enums

5) Add the following enum to the project:

public enum CustomerType {
GOLD,
SILVER,
IRON,
RUSTY

}

Provide the Customer class with a CustomerType field, + a getter and setter.

In your test code add a CustomerType to your test Customers.

Run and explain the column and values in the Customer table.

Add this annotation @Enumerated(EnumType.STRING) on top of the CustomerType field
Run and explain the column and values in the Customer table.

Collections of basic types
6) Provide the customer with a list of hobbies as sketched below:
private List<String> hobbies = new ArrayList();

And the methods: addHobby(String s) and String getHobbies() (return a comma separated list with all
hobbies)

! In this example we don't use the @bookn value, but you could use it later in the script, as the value for a foreign key



Test and verify how the list is stored by the Customer table

Do you like what you see?

If not, add the following annotation to the hobbies List (do it anyway ;-)
@ElementCollection()

Regenerate (run the project) tables and observe the result. | assume you agree, this looks at lot better ;-)

. But what if you don’t like the names of the generated table and its column names.

Remember, by default, JPA uses convenience over configuration and supplies default values for everything

you don’t supply. But YOU NOT JPA should be in control, to make a perfect database. Use info on this link

and add the necessary annotations so the name of the new class is hobbies, the column with the foreign
key is named Customer ID and the column with the actual hobby is named HOBBY.

Maps of Basic Types

7) Add a map to your Customer class as sketched below:

private Map<String,String> phones = new HashMap();

Add a method: addPhone(String phoneNo, String description){..}
Add a method: getPhoneDescription(String phoneNo){..}

Add a few phone numbers to your customer in the Tester class, and execute (which should regenerate the
tables).

Bloooob, do you like what you see?
If not, add the following annotations to the map:

@ElementCollection(fetch = FetchType.LAZY)
@MapKeyColumn(name = "PHONE")
@Column(name="Description")

Execute and observe the generated columns and values. Make sure you understand the purpose of each of
the annotations


https://wiki.eclipse.org/EclipseLink/Examples/JPA/2.0/ElementCollections#Basic_Collections

	Exercise - JPA Entity Mappings -1 
	Getting Started 
	Auto-generation of Ids and MySQL's AUTO_INCREMENT 
	Enums 
	Collections of basic types 
	Maps of Basic Types 


