
Modular cc toolchains
Please read Bazel Code of Conduct before commenting.

Authors: nathaniel.brough@gmail.com (github: silvergasp)
Status: Draft | In review | Approved | Rejected | In progress | Implemented
Reviewers: tpudlik@google.com
Created: 2023-01-11
Updated: 2023-01-17
Discussion thread: <link>

Note from the Author: I am the maintainer/author of bazelembedded/rules_cc_toolchain,
so I may reference work done there, more so that I do with repositories like cfrantz/crt. This
is simply a reflection of what I’m familiar with, rather than a value judgement on each of
these repositories.

Overview
The current starlark C/C++ toolchain API is sub-optimal and inherits a lot of legacy behaviour

from the old CROSSTOOL proto-text configuration files. Creating a new toolchain requires a

significant amount of boilerplate and creating a modular framework for defining a custom

toolchain is incredibly challenging. The tight coupling in the current toolchain API results in

centralised toolchain configurations where small modifications to a toolchain configuration

require a complete fork/branch off a centralised toolchain. There have been at least two

independent efforts to improve this API by creating a set of abstractions and rules, to allow for

a more modular definition of toolchains. Both of these repositories use approximately the

same approach to create a modular toolchain.

- bazelembedded/rules_cc_toolchain

- cfrantz/crt

The obvious question is why we need to have extensible and modular toolchains. What are

the shortcomings of having a set of centralised toolchains? The answer to this question is not

entirely obvious straight off the bat. But here are some of the current challenges;

1. Duplication of code, between a combinatorial explosion of different chip

configurations and the corresponding toolchains.

2. Making toolchain easily modifiable, without requiring specialised bazel knowledge.

https://www.contributor-covenant.org/version/1/4/code-of-conduct
mailto:nathaniel.brough@gmail.com
https://github.com/silvergasp
mailto:tpudlik@google.com
https://github.com/bazelembedded/rules_cc_toolchain
https://github.com/cfrantz/crt
https://github.com/bazelembedded/rules_cc_toolchain
https://github.com/cfrantz/crt

Duplication of code

Massive duplication of code, for embedded/cross-compilation toolchains using Bazel. This is

particularly acute for deeply embedded/bare-metal devices that in general have a near-infinite

combination of CPU’s, FPU’s, SIMD processors, DSP’s etc. These combinations can’t easily be

expressed in a centralised toolchain using Bazel’s current constraint_{setting/value} system

without a combinatorial explosion of independent toolchains.

The other hitch that comes up here is the need for downstream users to be able to select

specific versions and flavours of the underlying tools (i.e. compiler, linker, archiver etc.).

Currently it’s not possible to have a toolchain spanning across multiple repositories. This is

one of the primary reasons why most toolchains maintainers tend towards a single monolithic

toolchain rather than one that is modular.

Where are we now?

Currently, most of the toolchain configuration is handled with a set of customized opaque

starlark “configuration” rules. A good example of this is shown in the toolchain tutorial,

minimised excerpt below;

toolchain/cc_toolchain_config.bzl:

NEW

load("@bazel_tools//tools/cpp:cc_toolchain_config_lib.bzl", "tool_path")

def _impl(ctx):

tool_paths = [# NEW

tool_path(

name = "gcc",

path = "/usr/bin/clang",

),

tool_path(

name = "ld",

path = "/usr/bin/ld",

),

tool_path(

name = "ar",

path = "/usr/bin/ar",

),

tool_path(

name = "cpp",

path = "/bin/false",

...

]

features = [# NEW

https://github.com/bazelbuild/bazel/issues/7746
https://bazel.build/tutorials/ccp-toolchain-config

feature(

name = "default_linker_flags",

enabled = True,

flag_sets = [

flag_set(

actions = all_link_actions,

flag_groups = ([

flag_group(

flags = [

"-lstdc++",

],

),

]),

),

],

),

]

return cc_common.create_cc_toolchain_config_info(

ctx = ctx,

...

tool_paths = tool_paths, # NEW

features = features,

)

This particular method of configuration is conducive towards a large centralised configuration

rule. Further, there are some issues that are carried over from the legacy configuration

system;

● The tool paths are either absolute paths or they are relative to the instantiation of the

configuration rule itself. This is an issue for creating any sort of hermetic toolchain

where the downloaded paths cannot create that relative path structure.

● The “tool_paths” key value system makes a set of assumptions that are in line with

GCC/clang compilers. Many other compilers will have a different pipeline when

building software leading to odd scenarios, where tool paths and flags are not intuitive

e.g.

tool_path(

name = "gcc",

gcc == clang ???

path = "/usr/bin/clang",

),

● Defining simple compilation/linker flags takes an astonishing amount of boilerplate
i.e. 16 lines of code for a single linker flag.

● Each set of features/compiler flags is directly coupled to the toolchain, and they are
configured in the custom toolchain configuration rules, there is limited opportunity
for re-use. Or we can’t express that a re-usable set of flags is for example
compatible with only clang, GCC, but not msvc.

Current workarounds

The tool_path problem (tracking issue: #7746)

The “wrapper script”->”injected environment variable” workaround;
This workaround involves creating a directory structure like so;

● “cc_toolchain/BUILD.bazel” (has cc_toolchain_config rule instantiated) e.g.
https://github.com/bazelembedded/rules_cc_toolchain/blob/main/cc_toolchain/BUIL
D.bazel#L92

● “cc_toolchain/wrappers/{gcc,ar,ld…} bash scripts that redirect the compulsory
relative toolpath to one that is relative to the output_base directory (bazel info
output_base). This can be done by injecting an environment variable into the build.
e.g.

set -euo pipefail

Workaround to replace all system includes with user includes

$CPP_TOOL_PATH $@

Note: In addition to this approach it’s more common to see a hard-coded toolchain
wrapper, something like;

set -euo pipefail

Workaround to replace all system includes with user includes

external/gcc_arm_none_compiler/bin/cpp $@

The action_config workaround
This workaround was available after the introduction of #10967. While this particular
addition is not documented, this change allows the following.

Use the action_config method combined with the separate tool constructor.

From the docstring;

Describes a tool associated with a crosstool action config. Args: path: Location of the tool;
Can be absolute path (in case of non hermetic toolchain), or path relative to the
cc_toolchain's package. If this parameter is set, tool must not be set. tool: The built-artifact
that should be used as this tool. If this is set, path must not be set.

https://github.com/bazelbuild/bazel/issues/7746
https://github.com/bazelembedded/rules_cc_toolchain/blob/main/cc_toolchain/BUILD.bazel#L92
https://github.com/bazelembedded/rules_cc_toolchain/blob/main/cc_toolchain/BUILD.bazel#L92
https://github.com/bazelbuild/bazel/pull/10967
https://github.com/bazelbuild/bazel/blob/09c621e4cf5b968f4c6cdf905ab142d5961f9ddc/tools/cpp/cc_toolchain_config_lib.bzl#L442
https://github.com/bazelbuild/bazel/blob/09c621e4cf5b968f4c6cdf905ab142d5961f9ddc/tools/cpp/cc_toolchain_config_lib.bzl#L442

So this looks something like this;

action_config (

config_name = ACTION_NAMES.cpp_link_executable,

action_name = ACTION_NAMES.cpp_link_executable,

tools = [

NEW label type tool field introduced in #10967

tool(tool = ctx.executable.my_ld),

],

)

To get this working in your toolchain you need to go through and create an action_config
for each of the ACTION_NAMES. Then you pass your list of action_configs to your
toolchain_config.

It's worth noting that while there is some extra boilerplate here there is also extra flexibility
in defining which tools get used and when. There are well-defined examples of that in the
bazel docs.

It’s interesting as well that there are now two entirely separate ways of defining tool targets.
The action_config method and the tool_path method.

Relevant links:

- https://github.com/bazelbuild/bazel/issues/7746
- https://stackoverflow.com/questions/73504780/bazel-reference-binaries-from-pac

kages-in-custom-toolchain-definition/73505313#73505313
- https://github.com/bazelbuild/bazel/pull/10967

The feature/flag configuration problem
The challenge here is twofold, reduce boilerplate and create a more-modular and reusable
system for defining flags.

Convert a starlark feature into a build rule workaround
This is the approach taken by both;

- bazelembedded/rules_cc_toolchain

- cfrantz/crt

By taking the feature constructor and converting it into a build rule, we can take fully
advantage of the configurability semantics that ship with Bazel. This includes select
statements, target_compatibility lists etc. This ends up looking something like this;

file: //features:BUILD.bazel

load("@rules_cc_toolchain//cc_toolchain/features/features.bzl",

"cc_feature")

cc_feature(

https://docs.bazel.build/versions/main/cc-toolchain-config-reference.html#example-usage
https://docs.bazel.build/versions/main/cc-toolchain-config-reference.html#example-usage
https://github.com/bazelbuild/bazel/issues/7746
https://stackoverflow.com/questions/73504780/bazel-reference-binaries-from-packages-in-custom-toolchain-definition/73505313#73505313
https://stackoverflow.com/questions/73504780/bazel-reference-binaries-from-packages-in-custom-toolchain-definition/73505313#73505313
https://github.com/bazelbuild/bazel/pull/10967
https://github.com/bazelembedded/rules_cc_toolchain
https://github.com/cfrantz/crt
https://github.com/bazelbuild/rules_cc/blob/daf6ace7cfeacd6a83e9ff2ed659f416537b6c74/cc/cc_toolchain_config_lib.bzl#L363

name = "garbage_collect_symbols",

compiler_flags = [

"-fdata-sections",

"-ffunction-sections",

],

enabled = True,

linker_flags = ["-Wl,--gc-sections"],

)

But there is no reason why we couldn’t constrain this further to say that this particular
feature is only compatible with gcc or clang;

file: //features:BUILD.bazel

load("@rules_cc_toolchain//cc_toolchain/features/features.bzl",

"cc_feature")

constraint_setting(

name = "compiler_flavour",

)

constraint_value(

name = "gcc",

constraint_setting = ":compiler_flavour",

)

constraint_value(

name = "clang",

constraint_setting = ":compiler_flavour",

)

cc_feature(

name = "garbage_collect_symbols",

compiler_flags = [

"-fdata-sections",

"-ffunction-sections",

],

enabled = True,

linker_flags = ["-Wl,--gc-sections"],

target_compatible_with = select({

":gcc": [],

":clang": [],

}),

)

This API can also be further extended to allow for library imports and includes e.g.

cc_toolchain_import(

name = "libc",

hdrs = glob([inc + "/**/*.h" for inc in INCLUDES] + [inc + "/*.h"

for inc in INCLUDES]),

additional_libs = [

"lib/x86_64-linux-gnu/libc.so.6",

"lib/x86_64-linux-gnu/libc-2.24.so",

"usr/lib/x86_64-linux-gnu/libc_nonshared.a",

],

includes = INCLUDES,

runtime_path = "/usr/lib/gcc/x86_64-linux-gnu/6",

shared_library = "usr/lib/x86_64-linux-gnu/libc.so",

static_library = "usr/lib/x86_64-linux-gnu/libc.a",

target_compatible_with = select({

"@platforms//os:linux": ["@platforms//cpu:x86_64"],

"//conditions:default": ["@platforms//:incompatible"],

}),

visibility = ["@rules_cc_toolchain//config:__pkg__"],

deps = [

":gcc",

":math",

":mvec",

":util",

"@rules_cc_toolchain_config//:compiler_rt",

],

)

Proposal
Some of the problems above are partially solved in third party repositories and we can use
these as a reference moving forward. However, there are still some open questions;

- How do we effectively manage a configurable interface for hermetic (non-system)
tools and compilers?

- How do we make toolchain definitions more modular and composable?

The general proposal to create a modular toolchain is to move the toolchain configuration
from a per toolchain custom bazel plugin out into BUILD definitions. While this approach
has been explored in some detail in the workarounds section, the effort is far from
complete.

The important components of the current toolchain API that are proposed to be converted
from custom configuration plugins to individual rules include;

● Features

https://github.com/bazelembedded/rules_cc_toolchain/blob/main/third_party/debian_stretch_amd64_sysroot.BUILD
https://bazel.build/tutorials/ccp-toolchain-config#configuring_the_c_toolchain
https://bazel.build/docs/cc-toolchain-config-reference#features

● Action configs

Features
As it currently stands a “feature” definition in the Bazel toolchain, consists of a constructor
“feature” that returns a provider “FeatureInfo”. The proposal here is to have a simple Bazel
rule that takes the feature constructor and uses it to create a simplified Bazel rule. E.g.

file: //my_custom_toolchain:BUILD.bazel

load("@rules_cc//cc/defs.bzl," "cc_feature")

load("@rules_cc//cc/actions.bzl," "ACTION_NAMES")

cc_feature(

name = "pic",

enabled = 1,

action_flags = {

ACTION_NAMES.assemble: ["-fpic"],

ACTION_NAMES.preprocess_assemble: ["-fpic"],

ACTION_NAMES.linkstamp_compile: ["-fpic"],

ACTION_NAMES.c_compile: ["-fpic"],

ACTION_NAMES.cpp_compile: ["-fpic"],

},

)

Now you might notice here that we have a lot of duplication here i.e. we have to attach the
“-fpic” flag to each of our actions. This is largely due to the limitations on the types that are
available in the attr module for Bazel rules. Thankfully we can create a wrapper similar in
concept to bazel-skylib’s “selects.with_or” macro, in this case, the above could be reduced
down to;

file: //my_custom_toolchain:BUILD.bazel

load("@rules_cc//cc/defs.bzl," "cc_feature")

load("@rules_cc//cc/actions.bzl," "ACTION_NAMES", "action_mux")

cc_feature(

name = "pic",

enabled = 1,

action_flags = action_mux({

(ACTION_NAMES.assemble,

ACTION_NAMES.preprocess_assemble,

ACTION_NAMES.linkstamp_compile,

ACTION_NAMES.c_compile,

ACTION_NAMES.cpp_compile) : ["-fpic"],

}),

)

https://bazel.build/docs/cc-toolchain-config-reference#example-usage
https://github.com/bazelbuild/rules_cc/blob/d7c11265cb157c9b962d87d9ab67b8c24e3a875f/cc/cc_toolchain_config_lib.bzl#L363
https://github.com/bazelbuild/rules_cc/blob/d7c11265cb157c9b962d87d9ab67b8c24e3a875f/cc/cc_toolchain_config_lib.bzl#L349
https://bazel.build/rules/lib/attr
https://github.com/bazelbuild/bazel-skylib/blob/main/docs/selects_doc.md#selectswith_or

Where the action_mux macro simply expands out each action in the tuple to be a complete
dictionary like the one above.

Now there is a hitch, we need to be able to handle variable expansion. Variable expansion is
required for flags where we don’t necessarily have complete information about the flag
when resolving the toolchain configuration. Examples of this include;

- Compiler outputs (we can’t know the output path for every target ahead of time)
- Include paths (we can’t hard code the include paths for every target ahead of time)

So to express variable expansion in our “cc_feature” rule we need to make a compromise to
ensure compatibility with our rules. The approach we will take is to restrict each feature to
allow for only one variable expansion. This is sufficient for most features, however, it does
require workarounds in some cases. Here is an example of an expansion with a single
variable;

file: //my_custom_toolchain:BUILD.bazel

load("@rules_cc//cc/defs.bzl," "cc_feature")

load("@rules_cc//cc/actions.bzl," "ACTION_NAMES", "action_mux")

cc_feature(

name = "preprocessor_defines",

enabled = 1,

iterate_over = "preprocessor_defines",

action_flags = action_mux({

(ACTION_NAMES.assemble,

ACTION_NAMES.preprocess_assemble,

ACTION_NAMES.linkstamp_compile,

ACTION_NAMES.c_compile,

ACTION_NAMES.cpp_compile) : ["-D%{preprocessor_defines}"],

}),

)

An example of a feature that would often require multiple variable expansions is the
“include_paths” feature. This is because we may have different types of includes that we
want to manage independently, and to mirror this there are 4 separate include variables
that are available for expansion;

- quote_include_paths
- include_paths
- system_include_paths
- framework_include_paths

One of the disadvantages of this approach is that we won’t be able to express multiple
expansions under a single feature. Instead, we’ll introduce the concept of dependent
features, which map onto the “implies” attribute of the current features API.

file: //my_custom_toolchain:BUILD.bazel

https://cs.opensource.google/bazel/bazel/+/master:src/main/java/com/google/devtools/build/lib/rules/cpp/CppActionConfigs.java;l=233?q=cppactionconfigs&ss=bazel%2Fbazel
https://github.com/bazelbuild/rules_cc/blob/main/cc/cc_toolchain_config_lib.bzl#L369

load("@rules_cc//cc/defs.bzl," "cc_feature")

load("@rules_cc//cc/actions.bzl," "ACTION_NAMES", "action_mux")

INCLUDE_ACTIONS = (ACTION_NAMES.assemble,

ACTION_NAMES.preprocess_assemble,

ACTION_NAMES.linkstamp_compile,

ACTION_NAMES.c_compile,

ACTION_NAMES.cpp_compile)

cc_feature(

name = "include_paths",

enabled = 1,

NEW deps attribute

deps = [

":quote_includes",

":include_paths",

...

],

)

cc_feature(

name = "quote_include_paths",

iterate_over = "quote_include_paths",

action_flags = action_mux({

INCLUDE_ACTIONS: ["-iquote%{quote_include_paths}"],

}),

)

cc_feature(

name = "include_paths",

iterate_over = "include_paths",

action_flags = action_mux({

INCLUDE_ACTIONS: ["-I%{include_paths}"],

}),

)

...

A further consideration is how we keep track of features that are incompatible with each
other. For example, when it comes to compilation mode features “opt”, “dbg”, “fastbuild”,
we want to ensure that only one of these features can be applied at any given point. This is
currently achieved using the “provides” attribute of the feature constructor. To do this in
the new api we’ll introduce a new rule “cc_feature_setting”, which will have similar
semantics to Bazel’s built in “constraint_setting”. This will look something like this;

file: //my_custom_toolchain:BUILD.bazel

https://bazel.build/reference/be/platform#constraint_setting

load("@rules_cc//cc/defs.bzl," "cc_feature", "cc_feature_setting")

load("@rules_cc//cc/actions.bzl," "ACTION_NAMES", "action_mux")

cc_feature_setting(

name = "compilation_mode",

)

cc_feature(

name = "opt",

feature_setting = ":compilation_mode",

...

)

cc_feature(

name = "dbg",

feature_setting = ":compilation_mode",

...

)

cc_feature(

name = "fastbuild",

feature_setting = ":compilation_mode",

...

)

Open questions
Up until this point there have been no incompatible changes introduced and this is simply
proposed as an abstraction layer over the current toolchains API. However, there are some
additional areas that we should explore. This includes;

- How do we map the target name to the feature name (in the toolchain). I.e. in the
example above do we call the feature “dbg” or “@my_repository//my_toolchain:dbg”.
What implications would a full label name have for compatibility and consistency in
the build files. Would we have to create a set of “common” alias features, so that you
can still use the common “features” definitions with a common interface?

- Do we want to create a more consistent API around action names e.g. would we
want each action to have its own target i.e. “@rules_cc//actions:c_compile”, rather
than the constant defined as “ACTION_NAMES.cc_compile”. E.g.

file: //my_custom_toolchain:BUILD.bazel

load("@rules_cc//cc/defs.bzl," "cc_feature")

cc_feature(

name = "pic",

enabled = 1,

https://bazel.build/docs/cc-toolchain-config-reference#wellknown-features

action_flags = action_mux({

("@rules_cc//actions:assemble",

"@rules_cc//actions:preprocess_assemble",

…
"@rules_cc//actions:cpp_compile") : ["-fpic"],

}),

)

Action configs
Action configs serve the purpose of coordinating the usage of specific tools with the flags
defined in the corresponding features. The proposal here is to take an identical approach to
the feature rule. E.g.

file: //my_custom_toolchain:BUILD.bazel

load("@rules_cc//cc/defs.bzl," "cc_action_config", "ACTION_NAMES")

config_setting(

name = "fastbuild",

values = {"compilation_mode": "fastbuild"},

)

config_setting(

name = "opt",

values = {"compilation_mode": "opt"},

)

config_setting(

name = "dbg",

values = {"compilation_mode": "dbg"},

)

alias(

name = "linker",

actual = select({

":fastbuild": ":fastbuild_linker",

":opt": ":opt_linker",

":dbg": ":dbg_linker",

}),

)

cc_action_config(

name = "opt_linker",

action_name = ACTION_NAMES.cpp_link_executable,

Specify the tool as either a label or an absolute path

tool = "@com_clang//:bin/ld.lld",

tool_path = "/usr/bin/clang",

action_flags = {...}

)

cc_action_config(

name = "fastbuild_linker",

action_name = ACTION_NAMES.cpp_link_executable,

tool = "@com_mold//:bin/mold",

action_flags = {...}

)

alias(

name = "dbg_linker",

actual = ":fastbuild_linker",

)

Open questions
At the moment it is not entirely clear to me why we couldn’t merge the action_config and
the feature API’s into one. This would be doable by keeping the tool_path and, tool
attributes optional. Would this make sense?

A complete toolchain using the new API
Using the proposed API we’d be able to significantly lower the barrier for entry for creating
a new toolchain or slightly modifying one in a modular manner. E.g.

cc_action_config(

name = "linker_action",

action_name = ACTION_NAMES.cpp_link_executable,

tool = "@com_llvm//:bin/ld.lld",

)

... An action config per action to specify the tool to use ...

cc_feature(

name = "default_linker_flags",

enabled = 1,

action_flags = action_mux({

(ACTION_NAMES.cpp_link_executable,

ACTION_NAMES.cpp_link_dynamic_library,

ACTION_NAMES.cpp_link_nodeps_dynamic_library): ["-lstdc++"],

})

)

... Other features ...

cc_toolchain_config(

name = "my_toolchain_config",

action_configs = [

":linker_action",

... Other actions configs ...

],

features = [

":default_linker_flags",

... Other Features ...

],

)

cc_toolchain(

name = "my_toolchain",

config = ":my_toolchain_config",

... Other file attributes ...

)

It’s worth noting here as well is that the cc_toolchain_config rule, which is usually provided
by the toolchain maintainer, probably doesn’t need to exist anymore and could probably be
merged with the cc_toolchain target or bundled up together using a macro.

Ergonomics and re-usability
To fully take advantage of the new “toolchain feature in the BUILD file” we’d Ideally be able
to take advantage of the full set of configuration tools that are available in the Bazel build
environment i.e.;

● selects,
● target_compatibility,
● config_settings etc.

To give a more concrete example it would be nice to be able to constrain a feature to a
particular set of compilers. E.g. a feature that supports only gcc and clang but doesn’t
support any other compiler.

cc_feature(

name = "default_linker_flags",

enabled = 1,

action_flags = action_mux({

(ACTION_NAMES.cpp_link_executable,

ACTION_NAMES.cpp_link_dynamic_library,

ACTION_NAMES.cpp_link_nodeps_dynamic_library): ["-lstdc++"],

}),

target_compatible_with = select({

"@rules_cc//cc/compiler_flavour:gcc": [],

"@rules_cc//cc/compiler_flavour:clang": [],

"//conditions:default": ["@platforms//:incompatible"],

})

)

Exactly how to implement this step needs to be explored, however, it should be doable to
achieve this using transitions. i.e. the toolchain specifies a transition setting for the compiler
flavour.

Compatibility
Initially there will be no incompatibilities with the new approach as we will just be creating
an abstraction layer over the current API. However, in the process of doing so, we may have
the opportunity to deprecate some problematic API’s. For example, if we are able to use the
action_config approach to track tool location then we should be able to deprecate the
redundant and problematic tool_path API. This proposal will maintain backward
compatibility, but make recommendations on breaking changes.

Document History
Date Description

2023-01-11 First proposal.

2023-01-14 Removed section on building system libraries from source. As that
effort will be tracked by a separate proposal.

2023-01-15 ● Add details on compatibility.
● Adds a more complete description of the proposed API

2023-01-17 Adds a small section on compiler flavours, and the ability to configure
compatibility and selectively set flags on a per feature basis.

