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Chapitre 11
Chaines de Markov

I. Suites de matrices
Définition 1

Soient kN et neN tels que Un = (ui n) € Mk 1(R). (Un) est une suite de matrices colonnes si chacun
i€[1,k] :
des coefficients u des matrices U est le terme général d'une suite indicée par n.

Exemple 1
La suite (Un) définie par
2
vneN,U = (n"2n1)
n
est une suite de matrices colonnes dont les coefficients sont les suites (u1 n), (uz n), (u3 n) définies pour tout neN
par
{ul,n =nu, = 2n U, = 1
La suite (u3 n) estici constante.

Remarque

On peut généraliser les suites de matrices a tous les espaces de matrices Mk T(R) ouk,reN .

Définition 2
Soient kEN " et neN tels quelU = (u, ) eEM (R). (U ) converge si chacune des suites (u_ ) est une
n i ek k1 n Y nen
suite convergente. Si chacune des suites Euin converge vers li pour tout i€[[1, k] alors (Un) converge vers
" nenN
la matrice colonne U = (l)
Y ie[1,k]
Exemples
= Lasuite (Un) définie a 'exemple 1 diverge car les suites (u1 n) et (u2 n) divergent.
" neN " neN

* Lasuite (Un) définie par
vnen,u =(e 1)

convergeversU = (01)

Propriété 1
Soient kEN et neN . Soit AEMk(R). Si (Un) est une suite de matrices colonnes de Mk 1(R) telle que
vneN,U = AU
n+1 n
Alors

VneN,U =AU
n 0

Preuve
Par une récurrence triviale

Exemple 1
Soient les suites (an) et (bn) définies par a,= 1et b0 = 2et
vneN,{a .=a + 2b b =—a + 4b
n+1 n n n+l n n
Posons alors, soit n€N,

U =(ab )etA=(12 - 14)

n
Ainsi,
U,=(a,b,)=(12)etU =AU
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Remarque

Dans le supérieur, on calculera A" en écrivant A sous la forme B(D + N)B_1 ou D est
une matrice diagonale et ou N est une matrice nilpotente qui commute avec A (en
application du théoreme de Jordan, ce qui revient de fait a faire un changement de
base).

Pour l'illustrer avec 'exemple précédent, la méthode consiste a calculer le polynome
caractéristique de A

X,(0=[XI,—Al=1Xx -1 - 21X —4|=(X - DX - 4+ 2 =X -5X +6
Ce polyndme possede deux racines distinctes et simples que 'on nomme des valeurs
propres : 2 et 3. On verra dans le supérieur qu’il s’agit d'une condition suffisante pour

affirmer que A est diagonalisable, c’est-a-dire que A s’écrit sous la forme d’'une matrice
diagonale D = (200 3) dans une base de vecteurs propres constituée de 2 vecteurs

non nuls Xz(x y)et X3(x' y' ) tels que
AX, = 2X2(1)e1:AX3 = 3X, (2)
Or,
DMeA2 —14)xy)=2xy)eof{x + 2y =2x —x + 4y = 2y 2y = x
Donc X2 = (2 1) convient. Par ailleurs,
2Q)=(12 -1 4)(x' y‘ ) = 3(x' y')(:»{x' + Zy' =3x —x + 4y' = 3y' ox = y'
Donc X3 = (11) convient.
On pose alors
B=(2111)
Et donc, en remarquant que B est inversible car |B] = 2X1 — 1x1 = 1+0,
B'=(1-1-12)
Ainsi, on peut vérifier que
A= BDB™
On en déduit que, par une récurrence évidente, soit n€N,
— n — = — —_
A"=(BDB™) = BDB™'XB__ DB 'x..xBDB ' = BD'B"
2

Ainsi,

n+l . n

A'=111)(2"003")@ -1 —12)=(2""3"2"3")a1 -1 - 12):(2”“—3"2><3"—2 2" —3"2x3" -
Et donc

n+l n_n_n

n+1

n n+l n n+l n+l n
U =AU, =2 -2")

-3"2x3" -2 2—3”2><3”—2”)(12)=(3”“—2 3
Soit
a =3n+1_2n

n

+ n

Yeth =3 — 2
n

Remarque
Dans le cours de mathématiques expertes, on demandera simplement de montrer par un raisonnement par
récurrence que les formes explicites des suites a et bn trouvées ci-dessus conviennent.

Propriété 2
Soient kEN™ et neN . Soient AEMk(R) et BEMk 1(R). Soit (Un) une suite de matrices colonnes de Mk 1(R) telle

que
vneN,U =AU + B
n+1 n
Si la suite (Un) converge alors sa limite U € M . 1(R) vérifie
U=AU + B
Preuve

La preuve repose sur la continuité de 'application U—AU + B dans Mk 1(R)
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Exemple 2
Soient les suites (an) et (bn) définies par a,= Oet b0 = let
2

vneN,{a = =—=a —=b —1b
n+ n 57n n+

—_ 2 3
) - ——5an+5bn+1

1
Posons alors, soit n€N,

U =(ab)B=(-11)A=%52 -1 -23)

n
Ainsi,
U, = (a0b0)= (01)etU =AU +B

Calculons d’abord U telle que U = AU + B (1)
(DU — AU = B<=>(12 — A)U =B
Or,

3x2—1x2

|12—A|=(%)2|3122|= -

On en déduit que I, - A est inversible et

4
=25 %0

-1 25 1 5
(IZ—A) =2tx—(2 -1-23)=2(2 -1 -23)

Donc
-1 5 1
(WeU =(I,- A) B=+5@2 -1 —23)(— 11)=~(- 1525)
Posons alors, soit n€N,
V =U -U
n n
Ainsi,
L =U  —U=AU +B - (AU + B)=A(Un— U)= AV,

Ainsi, d’apres la propriété 1,

vnen,v_ = A"v

n 0
Or,
1 1
Vi=U,—-U= (01)——(=1525)=-(15 — 21)

Comme dans I'exemple 1, on va montrer que A est diagonalisable pour pouvoir trouver une expression de Vn
puis de Un. Dans le cadre du cours de mathématiques expertes, les exercices donneront a chaque fois la formule
finale de Vn qu'il suffira alors de vérifier par récurrence.

Calculons le polynéme caractéristique de A
— —lx-2LlLZy_2l-(x-2=< 3V _ 2
X,(0=[x1, - Al=|x -+ + 2 x -2 |_(X 5)(}( 5) 2 =X - X+—
—p -1 16 __9
A=b —4ac=1 e = e
Ce polynome possede donc deux racines distinctes et simples x etx,.

>0

_ —bh—A _ 1 3} _ 1 2 _ 1 _ —bhrA 1 3} _ 1 8 _ 4
X1 T T _2(1 )—sz—setxz— 2a _2(1+5)_2X5_5

A est donc diagonalisable, c’est-a-dire que A s’écrit sous la forme d’une matrice diagonale
_ 1
D=-(1004)
dans une base de vecteurs propres constituée de 2 vecteurs non nuls Xl(x y)et Xz(x y ) tels que
L .
AX =—X (DetAX =X (2)
Or,
(1)@%(2 -1 - 23)(xy)=%(xy)(=>{2x —y=x —2x+3y=yeSy=x
Donc X1 = (1 1) convient.

Par ailleurs,
@52 -1 -23)(xy)=5(ry )o{2x —y = 4x — 2x + 3y = 4y ©y =— 2
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Donc X3 = (1 — 2) convient.

On pose alors
B=(111 - 2)

Et donc, en remarquant que B est inversible car |B| = 1X(— 2) — 1x1 =— 3#0,
Bl=—2(-2-1-11)=2211 - 1)

Ainsi, on peut vérifier que

A =BDB'
On en déduit ainsi que, par une récurrence évidente, soit n€N,

A"=BD"B
Ainsi,
A'=(111 —2)x=(1004")x+(211 —1)= 14"1 —2x4")211 — 1)A"=——(2 +4"1 -4"2 -

( )X —(1004")x 5( )=—=( ) A =——(2 +
Et donc
V=AW, = —(2+4"1 —4"2 — 2x4" 1 4+ 2x4" ) x (15 — 21) = ——(9 + 36x4"9 — 72x4" ) = ——(1 ;
n 0 3x5 4 12x5 4x5
Soit
_ _ 3 n+1 . n+1 i _
U=V +U-= 4X5,1(1 +4"1 - 2x4" )+ 4(= 1525)

On en déduit donc que, soit n€N,

_ 15 3(1+4"") p = 25 3(1-2x4""")
a =———+ T etb =—-+ -
n 4x5 n 4x5

. . . 15 25
On peut remarquer que ces deux suites convergent bien respectivement vers — = etT

En effet, soit n€N,

3
3(1+4™) ( 4 )” o 12
= ? X

4

(4) = Oet(g”:u) -3

Or,

-~

Dong, par produit et somme de limites,

De la méme facon, soit n€N,

Or,

Dongc, par produit et somme de limites,

Remarque
Il peut y avoir une solution a I'équation U = AU + B sans que la suite (Un) ne converge. Il suffit de considérer

la matrice A = (111 1) pour s’en convaincre. Dans le supérieur, on définira une norme pour les matrices qui
permettra notamment de donner une condition suffisante pour que la suite converge.

II. Chaines de Markov
Définition 3

Soit (Xn une suite de variables aléatoires a valeurs dans un ensemble xCR. (Xn) est une
neN
chaine de Markov si pour tout entier neEN et pour tout n + 2 — uplet
n+2
(xo,xl, ...,xn,an) €x telque

n
P(X,=x,X =x,.,X =x)= P(nizoXi = xi) >0
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I'égalité suivante est vérifiée
P(Xn+1 - xn+1|X0 - xO' Xl - xl' "" Xn - xn) - P(Xn+1 - xn+1|Xn - xn) - PXn=in(Xn+1 - xn+1)
La chaine est homogeéne si
X 2
VnenN VX, X, EX, P(Xn+1 = xj|Xn = xi) = P(Xn = leXn_1 = xl,)

Remarques

= Autrement dit, P(X = xn+1|X0 =X ,X1 =X, ., Xn = xn) ne dépend que de n, x etx

n+1 0 1 n+1’
= Dire que (Xn) est une chaine de Markov signifie que, soit n€N, Xn+1 est indépendant du vecteur aléatoire
(X XL, X )sachantX .
0 1 n—1 n
= Dans une chaine de Markov, la valeur de Xn+1 ne dépend que de la valeur de Xn. On parle alors de processus

sans mémoire.
= Dans ce contexte, I'événement Xn =X se traduit par la phrase « I’état a I'instant n vaut x »

Exemple 3 (Fortune du joueur)
Un joueur dispose de m euros. A chaque partie, le joueur gagne 1€ avec une probabilité de p€]0; 1] et perd 1€
avec une probabilité 1 — p. La fortune du joueur aprés n parties est décrite par la variable aléatoire Xn. La suite

(Xn) est une chaine de Markov homogene telle que

VneN, viez, P(X = i)¢0=>P(Xn+1 = jIX =i)={psij=i+11—psij=i— 10sinon

Définition 4
*
Soit kEN et (Xn) une chaine de Markov homogene a valeurs dans un ensemble fini y = {x1 X5 s xk} ou
nenN

x1<x2< <xk
La matrice de transition P de cette chaine de Markov est la matrice (pij) € M, (R) telle que
vijelL ki p, = P(X1 = xlX, = xi)

Remarques
= La condition x, <x,< .. <x permet de s’assurer 'unicité de la matrice de transition méme si dans la

littérature mathématique cette condition n’est pas formulée (mais plutét implicite). Cela dit, le probleme
reste le méme (malgré les n ! rangements possibles de x) car les matrices trouvées dans chacun des cas ont
les mémes caractéristiques. La plupart du temps, on se placera dans le cas ou x = [1, k] et ainsi
Vi, j€[L k], p, = P(x, = jIX, = i)
= Par définition, tous les coefficients de cette matrice sont positifs ou nuls.
= La somme des coefficients de chaque ligne d'une telle matrice égale 1. En effet, soit i€[1, k], d’apres la
formule des probabilités totales,

§ k P(X X ) § P(X1=xan0=xL_) " § b (X P ) § P(X,=x) L
= = X. =Xx|= = =x.N = X. = =
= le = 1 o o P(X,=x) P(X,=x,) = 1 | 0 W2 pl‘} P(X =x,
Définition 5

Soient kEN et (Xn) une chaine de Markov homogéne a valeurs dans un ensemble fini y = {xl X5 xk}

nenN
ou

x1<x2<...<xk

La loi de probabilité m de la variable Xn est la matrice ligne (li) € M1 k(R) telle que
vie[1, k], L = P(X = x)
L n L
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Propriété 3

Soient kEN et (Xn) une chaine de Markov homogéne a valeurs dans un ensemble fini y = {x1 X5 e xk}
nenN

ou x, <x,<.<x, de matrice de transition P = (pij). Soit neN, m désigne la loi de probabilité de la

variable Xn

s =mn P
n+1 n
n
To=T, P
En particulier, si la chalne part de X, W, = (O -0 1wl 0o - 0) et si 'on note P?j les coefficients de la
matrice P"
n
P(Xn ~ xl) B P(Xn = |XO B xl) B Pi,i
Preuve

Soit n€N. Soit A = (aj) € M1,k(R) telle que

A=m P
n

Donc, par homogénéité de la chaine de Markov et d’apres la formule des probabilités totales,

k k k
VJelL kI, aj - 2:1 P(Xn - xi)pi.j - 2:1 P(Xn - xi)P(Xl - xj'|X0 - xi) - iz:l P(Xn - xi)P(Xn+1 - lexn - xi)
k
aj - igl P(Xn+1 - xj n Xn - xl’) - P(Xn+1 = xj)
On en déduit que

T[n+1 - T[n P (1)

Par une récurrence évidente, on peut alors montrer que
n
=mn P (2
no=m P (2)

Si = 0 -0 1, 0 - O), la formule (2) permet d’affirmer que
m =T P =(0 w01 0 - 0)P”=(P’_l.)
n 0 [o7) ij JE[LK]

Ainsi, par identification avec T

vj€e[l, k]],P(Xn = xj) =P

Théoreme 1

Soit (Xn) une chalne de Markov homogéne de matrice de transition P. Soit n€N, m désigne la loi de
neN

probabilité de la variable Xn. S’il existe un entier n tel que la matrice P" ne contienne pas de 0 alors la suite
(nn) converge vers la matrice m vérifiant

m = mP

et cette limite ne dépend pas de .

Remarque
Pour montrer le théoréme 1, il faut introduire des notions qui débordent largement du programme de maths
expertes. Nous allons cependant considérer quelques exemples pour mieux cerner le probleme.

Exemple 4
Une roue comprend 3 secteurs 1,2 et 3. Une fleche indique le secteur obtenu lorsque la roue tourne dans le sens
croissant. On considéere les variables Xn qui indiquent quel secteur est désigné par la fleche aprés n

changements de secteurs. Ainsi, (Xn) est une chalne de Markov homogene de support x = [1, 3] telle que,
nenN

soient n€N et XXX € 1, 3],
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X =x,X =x,..X :x)=P(X =x |X =x)={1six —x €{— 2;1}0sinon
0 0 1 1 n n n n+1 n

n+1~ “n+1'Tn

P(x  =x_|
n+1 n+1
La matrice de transition de cette chalne est

P=(010001100)

= Sil'on place la fleche au hasard sur un secteur au départ, on peut déterminer ainsi la loi de probabilité de XO
=1)= —2)= - 3=+~
P(Xo - 1)_ P(Xo - 2)_ P(Xo N 3) 3

Et ainsi

Or,
11 1 11 1
mP = (55 3)010001100)=(5 55 )=m
On en déduit que, a I'aide d’'une récurrence évidente,
11 1
VTLEN,T[n = (? 373 )
Dans ce cas, la suite (nn) converge vers T = T, vérifiant m = mP mais qui dépend indéniablement de M,
= (Cette fois-ci, on suppose que la fleche désigne le secteur 1 au départ. Ainsi,
m, = (100)

w =P =(100)(010001100)=(010)

W, =P =(010)(010001100)=(001)

m, =P =(001)(010001100)=(100)
En continuant le processus, on remarque aisément que M, =T, =T et d’'une maniere générale, soit KEN,

i =T[0=(100)

3k
Myerr = 1y = (010)
My =T, = (001)

On en déduit que la suite (nn) ne converge pas.

= Supposons maintenant que = (abc)oua,b, CER: telsquea + b +c =1
™ T[OP =(abc)(010001100)=(cab)
m,=mpP = (cab)(010001100)=(bca)
1'[3=1'[2P =(bca)(010001100)=(abc)
On se retrouve dans le méme cas de figure que précédemment et la suite (nn) ne converge pas sauf si

1
a—b—c—3

(AJIP—‘
|~

On pourra remarquer que la seule solution de I'’équation m = mP est ( % %) et que si T, # ( % % ), la

w

suite (T[n) ne converge pas.

Exemple 5

Dans un jeu vidéo, si un joueur recoit un coffre en or le premier jour, il aura chaque jour un coffre en or. S’il
recoit un coffre en argent, il recevra un coffre en platine ou en argent le jour suivant avec la méme probabilité
de 0,5. S'il recoit un coffre en platine, il recevra un coffre en platine ou en argent le jour suivant avec la méme

probabilité de 0,5. On définit une suite de variables aléatoires (Xn) définies de la maniére suivante :
nenN

X = 1 sile joueur regoit un coffre en argentlen + 1 — iéme jour.
X = 2 sile joueur regoit un coffre en platinelen + 1 — ieme jour.
Xn = 3 silejoueur regoit un coffreenorlen + 1 — iéme jour.

On a ainsi défini une chaine de Markov homogene de matrice de transition
P =(0,505005050001)
Remarquons que
P®=(0,50,500,50,50001)
Et par extension,
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vnenN ,P" = (0,50,500,50,50001)

Posons alors T, = (abc)oua,b, CER:_ telsquea + b+ c=1

‘lTn=1T0Pn= (abc)(0,50,500,50,50001)=(0,5a + 0,5b0,5a + 0,5bc)
La suite (nn) converge verst = (0,5a + 0,50 0,5a + 0,5b c¢) qui dépend de T,

On notera que I'équation m = mP admet une infinité de solutions de la forme (a a ¢ ) ou a, cER

Exemple 6
Une fourmi se déplace sur un triangle équilatéral ABC. A chaque fois qu’elle arrive sur un sommet, elle res)art

vers un autre sommet avec la méme probabilité de 1/2. On définit une suite de variables aléatoires (Xn
neN

définies de la maniere suivante :
Xn = 1 sila fourmi est sur le sommet A apres n cheminements.

Xn = 2 sila fourmi est sur le sommet B apres n cheminements.
Xn = 3 sila fourmi est sur le sommet C aprés n cheminements.

On a ainsi défini une chalne de Markov homogene de matrice de transition
P=(005050500,50,50,50)
Remarquons que

P’ = (0,50,250,250,250,50,250,250,250,5)
Nous sommes dans le cas d’application du théoreme 1 donc (nn converge vers 'unique solution de I'équation

n=mnPe(abc)=(abc)(00,50,50,500,50,50,50)=(abc)=(0,5b+ 0,5¢0,5a + 0,5¢c0,5a + 0,5b)={
Or,  étant une loi de probabilité,
a+b+c=1<:>a=b=c=%

1 1

1
Donc (nn) converge vers (? ey )

Par ailleurs, si 'on veut connaitre la probabilité de se retrouver au sommet A au bout de 5 déplacement a partir
de A, il suffit de calculer
10 11 11 11 10 11 11 11 10

5 5 10 11 11
m,=m P =(100)P =<100)(§§§§§W§§§)=(§§§)

Donc

P(X = 1):%

Exemple 7
Dans un jeu vidéo, un joueur recoit un coffre en or ou un coffre en argent par jour. S'il regoit un coffre en argent,
la probabilité d’obtenir un coffre en or le jour suivant sera de 0,3. S’il recoit un coffre en or, la probabilité

d’obtenir un coffre en argent le jour suivant sera de 0,6. On définit une suite de variables aléatoires (Xn)
neN

définies de la maniére suivante :
Xn = 1 sile joueur recoit un coffre en argentlen + 1 — ieme jour.

Xn = 2 sile joueur regoit un coffreenorlen + 1 — iéme jour.
On a ainsi défini une chaine de Markov homogéne de matrice de transition
P =(0,703060,4)
Nous sommes dans le cas d’application du théoreme 1 donc (T[n) converge vers 'unique solution de I'équation
n=mnPs(ab)=(ab)(0,70,30,60,4)=(ab)=(0,7a + 0,6b0,3a + 0,4b)={a =0,7a + 0,6bb = 0,3a +
Or, t étant une loi de probabilité,
a+b=1=3b = 1ob =+

3
On peut interpréter ce résultat en disant que sur le long terme, un joueur obtient un coffre en or un jour sur
trois en moyenne.

On peut aussi par exemple calculer la probabilité d’obtenir un coffre en or le 4e jour sachant que I'on a regu un
coffre en or le premier jour.

2 1
Donc (T[n) converge vers (? - )
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T, = n0P3 =(01 )P3 =(01)(0,70,30,60,4 )3 =(01)(0,6670,3330,6660,334) = (0,666 0,334)
Donc
P(X, = 2)= 0,334
On peut remarquer que la probabilité trouvée est trés proche de la probabilité limite (la convergence est tres
rapide) et trés peu différente si le joueur avait obtenu un coffre en argent le premier jour.

IIL. Lien avec les graphes

On peut associer une chaine de Markov possédant un nombre fini d’états a une matrice de transition finie et
donc a un graphe orienté pondéré c’est-a-dire un graphe ou chaque aréte entre deux sommets i et j possede un
poids différent qui correspond a la probabilité P, = P(X1 = xj|X0 = xi).

On peut ainsi reprendre les exemples précédents.
Exemple 4 5 6 7

5 0,5 5 0,4
1

0,3
Graphe 1 @ 0.6
1
(D e
1 0,5 0,7

bl

Exemple 8 Les urnes d’Ehrenfest

Le physicien Paul Ehrenfest développa en 1907 un modéle pour montrer qu'un modele microscopique
réversible pouvait conduire a un modele macroscopique irréversible.

On dispose de 2 urnes A et B et de k boules dans ces 2 urnes. A chaque étape, on choisit une des k boules au
hasard et on la met dans 'autre urne. On note Xn le nombre de boules contenues dans I'urne A aprés n étapes.

On a ainsi défini une chalne de Markov homogene de matrice de transition
P=(010 - 00,5005~ :0~~-0: 050050 - 010)

En remarquant que P = (pij) € Mk+1(R) ou
Vi je[Lk + 1]p, = P(x1 =j-1x,=i- 1)

Prenons par exemple le cas k = 2

P=(0100500,5010) 2
Le graphe associé est le suivant. 1
P*=(0,500,50100,500,5) 0.5
On remarque ensuite que PP=P et donc, par une 1
récurrence évidente, soitp € N*, ! 0
p? = p? 05
P2p+1 —p

Les conditions du théoreme 1 ne sont pas remplies et (nn) ne converge pas sauf si = (abc) est un état

stable, c’est-a-dire si

1T0=1T0P4:>(abc)= (0,5ba + c0,5b)

={a=05bb=a+cc=0,5b=a=c=0,5b
Or, Tt étant une loi de probabilité,
a+b+c=1=2h=1
1 1 1

On en déduit que = (T o ) est le seul état stable.

On remarque par ailleurs que si 'on prend des valeurs de k de plus en plus grandes, le systeme tend a se
stabiliser malgré tout autour de k/2 justifiant I'hypothése de départ.
Voici un programme Python pour simuler le modeéle d’Ehrenfest.

import random
import matplotlib.pyplot as plt

def ehrenfest(n_boules, n_etapes):
urne a =n boules # Initialement, toutes les boules sont dans I'urne A
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urne_b =0
historique_a = [urne_a]

for _in range(n_etapes):
# Choisir une boule au hasard
boule_choisie = random.randint(1, n_boules)

# Déplacer la boule
if boule_choisie <= urne_a:
urne_a -=1
urne_b +=1
else:
urne_a +=1
urne_b -=1

historique_a.append(urne_a)
return historique_a

# Parametres de la simulation
n_boules = 1000
n_etapes = 5000

# Exécuter la simulation
historique_a = ehrenfest(n_boules, n_etapes)

# Tracer les résultats

plt.plot(historique_a)

plt.xlabel("Etape")

plt.ylabel("Nombre de boules dans l'urne A")
plt.title("Modele d'Ehrenfest")

plt.grid(True)

plt.show()

Voici les résultats obtenus si l'urne A contient toutes les boules au départ et pour respectivement
k =10,k = 100,k = 1000,k = 10 000
n = 50,n = 500,n = 5000,n = 50000
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