
 
Chapitre 11 

Chaînes de Markov 
 

I. Suites de matrices 
Définition 1 

Soient  et  tels que .  est une suite de matrices colonnes si chacun 𝑘∈𝑁× 𝑛∈𝑁 𝑈
𝑛

= 𝑢
𝑖,𝑛( )

𝑖∈⟦1,𝑘⟧
∈ 𝑀

𝑘,1
𝑅( ) 𝑈

𝑛( )
des coefficients  des matrices  est le terme général d’une suite indicée par . 𝑢

𝑖,𝑛
𝑈

𝑛
𝑛

Exemple 1 
La suite  définie par 𝑈

𝑛( )
 ∀𝑛∈𝑁, 𝑈

𝑛
= 𝑛2 2𝑛 1 ( )

est une suite de matrices colonnes dont les coefficients sont les suites  définies pour tout  𝑢
1,𝑛( ), 𝑢

2,𝑛( ), 𝑢
3,𝑛( ) 𝑛∈𝑁

par 

 {𝑢
1,𝑛

= 𝑛2 𝑢
2,𝑛

= 2𝑛 𝑢
3,𝑛

= 1 
La suite  est ici constante. 𝑢

3,𝑛( )
 
Remarque 

On peut généraliser les suites de matrices à tous les espaces de matrices  où . 𝑀
𝑘,𝑟

𝑅( ) 𝑘, 𝑟∈𝑁×

 
Définition 2 

Soient  et  tels que .  converge si chacune des suites  est une 𝑘∈𝑁× 𝑛∈𝑁 𝑈
𝑛

= 𝑢
𝑖,𝑛( )

𝑖∈⟦1,𝑘⟧
∈ 𝑀

𝑘,1
𝑅( ) 𝑈

𝑛( ) 𝑢
𝑖,𝑛( )

𝑛∈𝑁
suite convergente. Si chacune des suites  converge vers  pour tout  alors  converge vers 𝑢

𝑖,𝑛( )
𝑛∈𝑁

𝑙
𝑖

𝑖∈⟦1, 𝑘⟧ 𝑈
𝑛( )

la matrice colonne  𝑈 = 𝑙
𝑖( )

𝑖∈⟦1,𝑘⟧

 
Exemples 
▪​ La suite  définie à l’exemple 1 diverge car les suites  et  divergent. 𝑈

𝑛( ) 𝑢
1,𝑛( )

𝑛∈𝑁
𝑢

2,𝑛( )
𝑛∈𝑁

▪​ La suite  définie par 𝑈
𝑛( )

 ∀𝑛∈𝑁, 𝑈
𝑛

= 𝑒−𝑛 1 ( )
converge vers  𝑈 = 0 1 ( )

 
Propriété 1 

Soient  et  . Soit  . Si  est une suite de matrices colonnes de  telle que 𝑘∈𝑁× 𝑛∈𝑁 𝐴∈𝑀
𝑘

𝑅( ) 𝑈
𝑛( ) 𝑀

𝑘,1
𝑅( )

 ∀𝑛∈𝑁, 𝑈
𝑛+1

= 𝐴𝑈
𝑛

Alors 

 ∀𝑛∈𝑁, 𝑈
𝑛

= 𝐴𝑛𝑈
0

Preuve 
Par une récurrence triviale 
 
Exemple 1 
Soient les suites  et  définies par  et  et 𝑎

𝑛( ) 𝑏
𝑛( ) 𝑎

0
= 1 𝑏

0
= 2

 ∀𝑛∈𝑁, {𝑎
𝑛+1

= 𝑎
𝑛

+ 2𝑏
𝑛
 𝑏

𝑛+1
=− 𝑎

𝑛
+ 4𝑏

𝑛
 

Posons alors, soit , 𝑛∈𝑁
 𝑈

𝑛
= 𝑎

𝑛
 𝑏

𝑛
 ( ) 𝑒𝑡 𝐴 = 1 2 − 1 4 ( ) 

Ainsi, 
 𝑈

0
= 𝑎

0
 𝑏

0
 ( ) = 1 2 ( ) 𝑒𝑡 𝑈

𝑛+1
= 𝐴𝑈

𝑛
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Remarque 

Dans le supérieur, on calculera  en écrivant  sous la forme  où  est 𝐴𝑛 𝐴 𝐵 𝐷 + 𝑁( )𝐵−1 𝐷
une matrice diagonale et où  est une matrice nilpotente qui commute avec A (en 𝑁
application du théorème de Jordan, ce qui revient de fait à faire un changement de 
base). 
Pour l’illustrer avec l’exemple précédent, la méthode consiste à calculer le polynôme 
caractéristique de  𝐴

 χ
𝐴

𝑋( ) = 𝑋𝐼
2

− 𝐴| | = 𝑋 − 1 − 2 1 𝑋 − 4 | | = 𝑋 − 1( ) 𝑋 − 4( ) + 2 = 𝑋2 − 5𝑋 + 6
Ce polynôme possède deux racines distinctes et simples que l’on nomme des valeurs 
propres : 2 et 3. On verra dans le supérieur qu’il s’agit d’une condition suffisante pour 
affirmer que  est diagonalisable, c’est-à-dire que  s’écrit sous la forme d’une matrice 𝐴 𝐴
diagonale  dans une base de vecteurs propres constituée de 2 vecteurs 𝐷 = 2 0 0 3 ( )
non nuls  et  tels que 𝑋

2
𝑥 𝑦 ( ) 𝑋

3
𝑥' 𝑦' ( )

 𝐴𝑋
2

= 2𝑋
2
 1( ) 𝑒𝑡 𝐴𝑋

3
= 3𝑋

3
  2( )

Or, 
 1( )⟺ 1 2 − 1 4 ( ) 𝑥 𝑦 ( ) = 2 𝑥 𝑦 ( )⟺{𝑥 + 2𝑦 = 2𝑥 − 𝑥 + 4𝑦 = 2𝑦 ⟺2𝑦 = 𝑥

Donc  convient. Par ailleurs, 𝑋
2

= 2 1 ( )

 2( )⟺ 1 2 − 1 4 ( ) 𝑥' 𝑦' ( ) = 3 𝑥' 𝑦' ( )⟺{𝑥' + 2𝑦' = 3𝑥' − 𝑥' + 4𝑦' = 3𝑦' ⟺𝑥' = 𝑦'

Donc  convient. 𝑋
3

= 1 1 ( )
On pose alors 

 𝐵 = 2 1 1 1 ( )
Et donc, en remarquant que  est inversible car , 𝐵 𝐵| | = 2×1 − 1×1 = 1≠0

 𝐵−1 = 1 − 1 − 1 2 ( )
Ainsi, on peut vérifier que 

 𝐴 = 𝐵𝐷𝐵−1

On en déduit que, par une récurrence évidente, soit , 𝑛∈𝑁

 𝐴𝑛 = 𝐵𝐷𝐵−1( )
𝑛

= 𝐵𝐷𝐵−1×𝐵⏟
=𝐼

2

𝐷𝐵−1×…×𝐵𝐷𝐵−1 = 𝐵𝐷𝑛𝐵−1

Ainsi, 

𝐴𝑛 = 2 1 1 1 ( ) 2𝑛 0 0 3𝑛 ( ) 1 − 1 − 1 2 ( ) = 2𝑛+1 3𝑛 2𝑛 3𝑛 ( ) 1 − 1 − 1 2 ( ) = 2𝑛+1 − 3𝑛 2×3𝑛 − 2𝑛+1 2𝑛 − 3𝑛 2×3𝑛 −(
Et donc 

 𝑈
𝑛

= 𝐴𝑛𝑈
0

= 2𝑛+1 − 3𝑛 2×3𝑛 − 2𝑛+1 2𝑛 − 3𝑛 2×3𝑛 − 2𝑛 ( ) 1 2 ( ) = 3𝑛+1 − 2𝑛+1 3𝑛+1 − 2𝑛 ( )
Soit 

 𝑎
𝑛

= 3𝑛+1 − 2𝑛+1 𝑒𝑡 𝑏
𝑛

= 3𝑛+1 − 2𝑛 
 
Remarque 
Dans le cours de mathématiques expertes, on demandera simplement de montrer par un raisonnement par 
récurrence que les formes explicites des suites  et  trouvées ci-dessus conviennent. 𝑎

𝑛
𝑏

𝑛
 

Propriété 2 

Soient  et  . Soient   et . Soit  une suite de matrices colonnes de  telle 𝑘∈𝑁× 𝑛∈𝑁 𝐴∈𝑀
𝑘

𝑅( ) 𝐵∈𝑀
𝑘,1

𝑅( ) 𝑈
𝑛( ) 𝑀

𝑘,1
𝑅( )

que 
 ∀𝑛∈𝑁, 𝑈

𝑛+1
= 𝐴𝑈

𝑛
+ 𝐵

Si la suite  converge alors sa limite  vérifie 𝑈
𝑛( ) 𝑈 ∈ 𝑀

𝑘,1
𝑅( )

 𝑈 = 𝐴𝑈 + 𝐵
Preuve 
La preuve repose sur la continuité de l’application  dans  𝑈⟼𝐴𝑈 + 𝐵 𝑀

𝑘,1
𝑅( )
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Exemple 2 
Soient les suites  et  définies par  et  et 𝑎

𝑛( ) 𝑏
𝑛( ) 𝑎

0
= 0 𝑏

0
= 1

 ∀𝑛∈𝑁, {𝑎
𝑛+1

= 2
5 𝑎

𝑛
− 1

5 𝑏
𝑛

− 1 𝑏
𝑛+1

=− 2
5 𝑎

𝑛
+ 3

5 𝑏
𝑛

+ 1 
Posons alors, soit , 𝑛∈𝑁

 𝑈
𝑛

= 𝑎
𝑛
 𝑏

𝑛
 ( ) 𝐵 = − 1 1 ( ) 𝐴 = 1

5 2 − 1 − 2 3 ( ) 
Ainsi, 

 𝑈
0

= 𝑎
0
 𝑏

0
 ( ) = 0 1 ( ) 𝑒𝑡 𝑈

𝑛+1
= 𝐴𝑈

𝑛
+ 𝐵 

 
Calculons d’abord  telle que  𝑈 𝑈 = 𝐴𝑈 + 𝐵 1( )

 1( )⟺𝑈 − 𝐴𝑈 = 𝐵⟺ 𝐼
2

− 𝐴( )𝑈 = 𝐵
Or, 

 𝐼
2

− 𝐴| | = 1
5( )2

3 1 2 2 | | = 3×2−1×2
25 = 4

25 ≠0
On en déduit que  est inversible et 𝐼

2
− 𝐴

 𝐼
2

− 𝐴( )−1 = 25
4 × 1

5 2 − 1 − 2 3 ( ) = 5
4 2 − 1 − 2 3 ( )

Donc 

 1( )⟺𝑈 = 𝐼
2

− 𝐴( )−1𝐵 = 5
4 2 − 1 − 2 3 ( ) − 1 1 ( ) = 1

4 − 15 25 ( )
Posons alors, soit , 𝑛∈𝑁

 𝑉
𝑛

= 𝑈
𝑛

− 𝑈
Ainsi, 

 𝑉
𝑛+1

= 𝑈
𝑛+1

− 𝑈 = 𝐴𝑈
𝑛

+ 𝐵 − 𝐴𝑈 + 𝐵( ) = 𝐴 𝑈
𝑛

− 𝑈( ) = 𝐴𝑉
𝑛

Ainsi, d’après la propriété 1, 

 ∀𝑛∈𝑁, 𝑉
𝑛

= 𝐴𝑛𝑉
0

Or, 

 𝑉
0

= 𝑈
0

− 𝑈 = 0 1 ( ) − 1
4 − 15 25 ( ) = 1

4 15 − 21 ( )
Comme dans l’exemple 1, on va montrer que A est diagonalisable pour pouvoir trouver une expression de  𝑉

𝑛
puis de . Dans le cadre du cours de mathématiques expertes, les exercices donneront à chaque fois la formule 𝑈

𝑛
finale de  qu’il suffira alors de vérifier par récurrence. 𝑉

𝑛
Calculons le polynôme caractéristique de  𝐴

 χ
𝐴

𝑋( ) = 𝑋𝐼
2

− 𝐴| | = 𝑋 − 2
5  1

5  2
5  𝑋 − 3

5  || || = 𝑋 − 2
5( ) 𝑋 − 3

5( ) − 2
25 = 𝑋2 − 𝑋 + 4

25

 ∆ = 𝑏2 − 4𝑎𝑐 = 1 − 16
25 = 9

25 > 0
Ce polynôme possède donc deux racines distinctes et simples  et .  𝑥

1
𝑥

2

 𝑥
1

= −𝑏− ∆
2𝑎 = 1

2 1 − 3
5( ) = 1

2 × 2
5 = 1

5  𝑒𝑡 𝑥
2

= −𝑏+ ∆
2𝑎 = 1

2 1 + 3
5( ) = 1

2 × 8
5 = 4

5  
 

 est donc diagonalisable, c’est-à-dire que  s’écrit sous la forme d’une matrice diagonale 𝐴 𝐴
 𝐷 = 1

5 1 0 0 4 ( )

dans une base de vecteurs propres constituée de 2 vecteurs non nuls  et  tels que 𝑋
1

𝑥 𝑦 ( ) 𝑋
2

𝑥' 𝑦' ( )
 𝐴𝑋

1
= 1

5 𝑋
1
 1( ) 𝑒𝑡 𝐴𝑋

2
= 4

5 𝑋
2
  2( )

Or, 

 1( )⟺ 1
5 2 − 1 − 2 3 ( ) 𝑥 𝑦 ( ) = 1

5 𝑥 𝑦 ( )⟺{2𝑥 − 𝑦 = 𝑥 − 2𝑥 + 3𝑦 = 𝑦 ⟺𝑦 = 𝑥
Donc  convient. 𝑋

1
= 1 1 ( )

 
Par ailleurs, 

 2( )⟺ 1
5 2 − 1 − 2 3 ( ) 𝑥' 𝑦' ( ) = 4

5 𝑥' 𝑦' ( )⟺{2𝑥' − 𝑦' = 4𝑥' − 2𝑥' + 3𝑦' = 4𝑦' ⟺𝑦' =− 2𝑥'
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Donc  convient. 𝑋
3

= 1 − 2 ( )
On pose alors 

 𝐵 = 1 1 1 − 2 ( )
Et donc, en remarquant que  est inversible car , 𝐵 𝐵| | = 1× − 2( ) − 1×1 =− 3≠0

 𝐵−1 =− 1
3 − 2 − 1 − 1 1 ( ) = 1

3 2 1 1 − 1 ( )
Ainsi, on peut vérifier que 

 𝐴 = 𝐵𝐷𝐵−1

On en déduit ainsi que, par une récurrence évidente, soit , 𝑛∈𝑁
 𝐴𝑛 = 𝐵𝐷𝑛𝐵−1

Ainsi, 

𝐴𝑛 = 1 1 1 − 2 ( ) × 1

5𝑛 1 0 0 4𝑛 ( ) × 1
3 2 1 1 − 1 ( ) = 1

3×5𝑛 1 4𝑛 1 − 2×4𝑛 ( ) 2 1 1 − 1 ( )𝐴𝑛 = 1

3×5𝑛 2 + 4𝑛 1 − 4𝑛 2 −(
Et donc 

𝑉
𝑛

= 𝐴𝑛𝑉
0

= 1

3×5𝑛 2 + 4𝑛 1 − 4𝑛 2 − 2×4𝑛 1 + 2×4𝑛 ( ) × 1
4 15 − 21 ( ) = 1

12×5𝑛 9 + 36×4𝑛 9 − 72×4𝑛 ( ) = 3

4×5𝑛 1 +(
Soit 

 𝑈
𝑛

= 𝑉
𝑛

+ 𝑈 = 3

4×5𝑛 1 + 4𝑛+1 1 − 2×4𝑛+1 ( ) + 1
4 − 15 25 ( )

On en déduit donc que, soit , 𝑛∈𝑁

 𝑎
𝑛

=− 15
4 + 3 1+4𝑛+1( )

4×5𝑛  𝑒𝑡 𝑏
𝑛

= 25
4 + 3 1−2×4𝑛+1( )

4×5𝑛  

On peut remarquer que ces deux suites convergent bien respectivement vers  et  − 15
4

25
4

En effet, soit , 𝑛∈𝑁

 3 1+4𝑛+1( )
4×5𝑛 = 4

5( )𝑛
×

3

4𝑛 +12

4

Or, 

 4
5( )𝑛

 = 0 𝑒𝑡 
3

4𝑛 +12

4( ) = 3 

Donc, par produit et somme de limites, 

 𝑎
𝑛( ) =− 15

4

De la même façon, soit , 𝑛∈𝑁

 3 1−2×4𝑛+1( )
4×5𝑛 = 4

5( )𝑛
×

3

4𝑛 −24

4

Or, 

 4
5( )𝑛

 = 0 𝑒𝑡 
3

4𝑛 −24

4( ) =− 6 

Donc, par produit et somme de limites, 

 𝑏
𝑛( ) = 25

4

 
Remarque 
Il peut y avoir une solution à l’équation  sans que la suite  ne converge. Il suffit de considérer 𝑈 = 𝐴𝑈 + 𝐵 𝑈

𝑛( )
la matrice  pour s’en convaincre. Dans le supérieur, on définira une norme pour les matrices qui 𝐴 = 1 1 1 1 ( )
permettra notamment de donner une condition suffisante pour que la suite converge. 
 
 
 
II. Chaînes de Markov 

Définition 3 
Soit   une suite de variables aléatoires à valeurs dans un ensemble .  est une 𝑋

𝑛( )
𝑛∈𝑁

χ⊂𝑅 𝑋
𝑛( )

chaîne de Markov si pour tout entier  et pour tout  𝑛∈𝑁 𝑛 + 2 − 𝑢𝑝𝑙𝑒𝑡
 tel que 𝑥

0
 ; 𝑥

1
 ; … ; 𝑥

𝑛
 ; 𝑥

𝑛+1( ) ∈ χ𝑛+2

 𝑃 𝑋
0

= 𝑥
0
, 𝑋

1
= 𝑥

1
, …, 𝑋

𝑛
= 𝑥

𝑛( ) = 𝑃 ⋂
𝑖=0
𝑛 𝑋

𝑖
= 𝑥

𝑖( ) > 0
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 l’égalité suivante est vérifiée 
 𝑃 𝑋

𝑛+1
= 𝑥

𝑛+1
|𝑋

0
= 𝑥

0
, 𝑋

1
= 𝑥

1
, …, 𝑋

𝑛
= 𝑥

𝑛( ) = 𝑃 𝑋
𝑛+1

= 𝑥
𝑛+1

|𝑋
𝑛

= 𝑥
𝑛( ) = 𝑃

𝑋
𝑛
=𝑖

𝑛

𝑋
𝑛+1

= 𝑥
𝑛+1( )

La chaîne est homogène si 

 ∀𝑛∈𝑁×, ∀𝑥
𝑖
, 𝑥

𝑗
∈ χ2, 𝑃 𝑋

𝑛+1
= 𝑥

𝑗
|𝑋

𝑛
= 𝑥

𝑖( ) = 𝑃 𝑋
𝑛

= 𝑥
𝑗
|𝑋

𝑛−1
= 𝑥

𝑖( )
Remarques 
▪​ Autrement dit,  ne dépend que de  et . 𝑃 𝑋

𝑛+1
= 𝑥

𝑛+1
|𝑋

0
= 𝑥

0
, 𝑋

1
= 𝑥

1
, …, 𝑋

𝑛
= 𝑥

𝑛( ) 𝑛, 𝑥
𝑛

𝑥
𝑛+1

▪​ Dire que  est une chaîne de Markov signifie que, soit ,  est indépendant du vecteur aléatoire 𝑋
𝑛( ) 𝑛∈𝑁 𝑋

𝑛+1
 sachant . 𝑋

0
, 𝑋

1
, …, 𝑋

𝑛−1( ) 𝑋
𝑛

▪​ Dans une chaîne de Markov, la valeur de  ne dépend que de la valeur de . On parle alors de processus 𝑋
𝑛+1

𝑋
𝑛

sans mémoire. 
▪​ Dans ce contexte, l’événement  se traduit par la phrase « l’état à l’instant  vaut  » 𝑋

𝑛
= 𝑥

𝑛
𝑛 𝑥

𝑛
 
Exemple 3 (Fortune du joueur) 
Un joueur dispose de  euros. A chaque partie, le joueur gagne 1€ avec une probabilité de  et perd 1€ 𝑚 𝑝∈]0 ; 1[
avec une probabilité . La fortune du joueur après  parties est décrite par la variable aléatoire . La suite 1 − 𝑝 𝑛  𝑋

𝑛
 est une chaîne de Markov homogène telle que 𝑋

𝑛( )
 ∀𝑛∈𝑁, ∀𝑖∈𝑍, 𝑃 𝑋

𝑛
= 𝑖( )≠0⟹𝑃 𝑋

𝑛+1
= 𝑗|𝑋

𝑛
= 𝑖( ) = {𝑝 𝑠𝑖 𝑗 = 𝑖 + 1 1 − 𝑝 𝑠𝑖 𝑗 = 𝑖 − 1 0 𝑠𝑖𝑛𝑜𝑛 

 
Définition 4 

Soit  et  une chaîne de Markov homogène à valeurs dans un ensemble fini  où 𝑘∈𝑁* 𝑋
𝑛( )

𝑛∈𝑁
χ = 𝑥

1
 ; 𝑥

2
 ; … ; 𝑥

𝑘{ }
 𝑥

1
< 𝑥

2
< … < 𝑥

𝑘
La matrice de transition  de cette chaîne de Markov est la matrice  telle que 𝑃 𝑝

𝑖,𝑗( ) ∈ 𝑀
𝑘

𝑅( )
 ∀𝑖, 𝑗∈⟦1, 𝑘⟧, 𝑝

𝑖,𝑗
= 𝑃 𝑋

1
= 𝑥

𝑗
|𝑋

0
= 𝑥

𝑖( )
Remarques 
▪​ La condition  permet de s’assurer l’unicité de la matrice de transition même si dans la 𝑥

1
< 𝑥

2
< … < 𝑥

𝑘
littérature mathématique cette condition n’est pas formulée (mais plutôt implicite). Cela dit, le problème 
reste le même (malgré les  rangements possibles de ) car les matrices trouvées dans chacun des cas ont 𝑛 ! χ
les mêmes caractéristiques. La plupart du temps, on se placera dans le cas où  et ainsi χ = ⟦1, 𝑘⟧

 ∀𝑖, 𝑗∈⟦1, 𝑘⟧, 𝑝
𝑖,𝑗

= 𝑃 𝑋
1

= 𝑗|𝑋
0

= 𝑖( )
▪​ Par définition, tous les coefficients de cette matrice sont positifs ou nuls. 
▪​ La somme des coefficients de chaque ligne d’une telle matrice égale 1. En effet, soit , d’après la 𝑖∈⟦1, 𝑘⟧

formule des probabilités totales, 

 
𝑗=1

𝑘

∑ 𝑝
𝑖,𝑗

=
𝑗=1

𝑘

∑ 𝑃 𝑋
1

= 𝑥
𝑗
|𝑋

0
= 𝑥

𝑖( ) =
𝑗=1

𝑘

∑
𝑃 𝑋

1
=𝑥

𝑗
∩𝑋

0
=𝑥

𝑖( )
𝑃 𝑋

0
=𝑥

𝑖( ) = 1
𝑃 𝑋

0
=𝑥

𝑖( ) 𝑗=1

𝑘

∑ 𝑃 𝑋
1

= 𝑥
𝑗

∩ 𝑋
0

= 𝑥
𝑖( )

𝑗=1

𝑘

∑ 𝑝
𝑖,𝑗

=
𝑃 𝑋

0
=𝑥

𝑖( )
𝑃 𝑋

0
=𝑥

𝑖( ) = 1

 
Définition 5 

Soient  et  une chaîne de Markov homogène à valeurs dans un ensemble fini  𝑘∈𝑁* 𝑋
𝑛( )

𝑛∈𝑁
χ = 𝑥

1
 ; 𝑥

2
 ; … ; 𝑥

𝑘{ }
où 

 𝑥
1

< 𝑥
2

< … < 𝑥
𝑘

La loi de probabilité  de la variable  est la matrice ligne  telle que π
𝑛

𝑋
𝑛

𝑙
𝑖( ) ∈ 𝑀

1,𝑘
𝑅( )

 ∀𝑖∈⟦1, 𝑘⟧, 𝑙
𝑖

= 𝑃 𝑋
𝑛

= 𝑥
𝑖( )

 

� 5 🙞 



Propriété 3 

Soient  et  une chaîne de Markov homogène à valeurs dans un ensemble fini  𝑘∈𝑁* 𝑋
𝑛( )

𝑛∈𝑁
χ = 𝑥

1
 ; 𝑥

2
 ; … ; 𝑥

𝑘{ }
où  de matrice de transition . Soit ,  désigne la loi de probabilité de la 𝑥

1
< 𝑥

2
< … < 𝑥

𝑘
𝑃 = 𝑝

𝑖,𝑗( ) 𝑛∈𝑁 π
𝑛

variable  𝑋
𝑛

 π
𝑛+1

= π
𝑛
 𝑃

 π
𝑛

= π
0
 𝑃𝑛

En particulier, si la chaîne part de ,  et si l’on note  les coefficients de la 𝑥
𝑖

π
0

= 0 ···  0 1⏟
𝑙

𝑖

 0 ···  0 ( ) 𝑃
𝑖,𝑗
𝑛

matrice  𝑃𝑛

 𝑃 𝑋
𝑛

= 𝑥
𝑗( ) = 𝑃 𝑋

𝑛
= 𝑥

𝑗
|𝑋

0
= 𝑥

𝑖( ) = 𝑃
𝑖,𝑗
𝑛

Preuve 
Soit . Soit  telle que 𝑛∈𝑁 𝐴 = 𝑎

𝑗( ) ∈ 𝑀
1,𝑘

𝑅( )
 
 

 𝐴 = π
𝑛
 𝑃

Donc, par homogénéité de la chaîne de Markov et d’après la formule des probabilités totales, 

 ∀𝑗∈⟦1, 𝑘⟧, 𝑎
𝑗

=
𝑖=1

𝑘

∑ 𝑃 𝑋
𝑛

= 𝑥
𝑖( )𝑝

𝑖,𝑗
=

𝑖=1

𝑘

∑ 𝑃 𝑋
𝑛

= 𝑥
𝑖( )𝑃 𝑋

1
= 𝑥

𝑗
|𝑋

0
= 𝑥

𝑖( ) =
𝑖=1

𝑘

∑ 𝑃 𝑋
𝑛

= 𝑥
𝑖( )𝑃 𝑋

𝑛+1
= 𝑥

𝑗
|𝑋

𝑛
= 𝑥

𝑖( )

 𝑎
𝑗

=
𝑖=1

𝑘

∑ 𝑃 𝑋
𝑛+1

= 𝑥
𝑗

∩ 𝑋
𝑛

= 𝑥
𝑖( ) = 𝑃 𝑋

𝑛+1
= 𝑥

𝑗( )
On en déduit que 

 π
𝑛+1

= π
𝑛
 𝑃 1( )

Par une récurrence évidente, on peut alors montrer que 

 π
𝑛

= π
0
 𝑃𝑛 2( )

Si , la formule  permet d’affirmer que π
0

= 0 ···  0 1⏟
𝑙

𝑖

 0 ···  0 ( ) 2( )

 π
𝑛

= π
0
𝑃𝑛 = 0 ···  0 1⏟

𝑙
𝑖

 0 ···  0 ( )𝑃𝑛 = 𝑃
𝑖,𝑗
𝑛( )

𝑗∈⟦1,𝑘⟧
Ainsi, par identification avec  π

𝑛

 ∀𝑗∈⟦1, 𝑘⟧, 𝑃 𝑋
𝑛

= 𝑥
𝑗( ) = 𝑃

𝑖,𝑗
𝑛

 
Théorème 1 
Soit  une chaîne de Markov homogène de matrice de transition . Soit ,  désigne la loi de 𝑋

𝑛( )
𝑛∈𝑁

𝑃 𝑛∈𝑁 π
𝑛

probabilité de la variable . S’il existe un entier  tel que la matrice  ne contienne pas de 0 alors la suite 𝑋
𝑛

𝑛 𝑃𝑛

 converge vers la matrice  vérifiant π
𝑛( ) π

 π = π𝑃
et cette limite ne dépend pas de . π

0

 
Remarque 
Pour montrer le théorème 1, il faut introduire des notions qui débordent largement du programme de maths 
expertes. Nous allons cependant considérer quelques exemples pour mieux cerner le problème. 
 
Exemple 4 
Une roue comprend 3 secteurs 1,2 et 3. Une flèche indique le secteur obtenu lorsque la roue tourne dans le sens 
croissant. On considère les variables  qui indiquent quel secteur est désigné par la flèche après  𝑋

𝑛
𝑛

changements de secteurs. Ainsi,   est une chaîne de Markov homogène de support  telle que, 𝑋
𝑛( )

𝑛∈𝑁
χ = ⟦1, 3⟧

soient  et  𝑛∈𝑁 𝑥
1
, 𝑥

2
, …, 𝑥

𝑛
∈ ⟦1, 3⟧,
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 𝑃 𝑋
𝑛+1

= 𝑥
𝑛+1

|𝑋
0

= 𝑥
0
, 𝑋

1
= 𝑥

1
, …, 𝑋

𝑛
= 𝑥

𝑛( ) = 𝑃 𝑋
𝑛+1

= 𝑥
𝑛+1

|𝑋
𝑛

= 𝑥
𝑛( ) = {1 𝑠𝑖 𝑥

𝑛+1
− 𝑥

𝑛
∈ − 2; 1{ } 0 𝑠𝑖𝑛𝑜𝑛 

La matrice de transition de cette chaîne est 
 𝑃 = 0 1 0 0 0 1 1 0 0 ( )

 
 
▪​ Si l’on place la flèche au hasard sur un secteur au départ, on peut déterminer ainsi la loi de probabilité de  𝑋

0

 𝑃 𝑋
0

= 1( ) = 𝑃 𝑋
0

= 2( ) = 𝑃 𝑋
0

= 3( ) = 1
3

Et ainsi 

 π
0

= 1
3  1

3  1
3  ( )

Or, 

 π
0
𝑃 = 1

3  1
3  1

3  ( ) 0 1 0 0 0 1 1 0 0 ( ) = 1
3  1

3  1
3  ( ) = π

1
On en déduit que, à l’aide d’une récurrence évidente, 

 ∀𝑛∈𝑁, π
𝑛

= 1
3  1

3  1
3  ( )

Dans ce cas, la suite  converge vers  vérifiant  mais qui dépend indéniablement de  π
𝑛( ) π = π

0
π = π𝑃 π

0
▪​ Cette fois-ci, on suppose que la flèche désigne le secteur 1 au départ. Ainsi, 

 π
0

= 1 0 0 ( )
 π

1
= π

0
𝑃 = 1 0 0 ( ) 0 1 0 0 0 1 1 0 0 ( ) = 0 1 0 ( )

 π
2

= π
1
𝑃 = 0 1 0 ( ) 0 1 0 0 0 1 1 0 0 ( ) = 0 0 1 ( )

 π
3

= π
2
𝑃 = 0 0 1 ( ) 0 1 0 0 0 1 1 0 0 ( ) = 1 0 0 ( )

En continuant le processus, on remarque aisément que  et d’une manière générale, soit , π
0

= π
3

= π
6

... 𝑘∈𝑁
 π

3𝑘
= π

0
= 1 0 0 ( )

 π
3𝑘+1

= π
1

= 0 1 0 ( )
 π

3𝑘+2
= π

2
= 0 0 1 ( )

On en déduit que la suite  ne converge pas. π
𝑛( )

▪​ Supposons maintenant que  où  tels que  π
0

= 𝑎 𝑏 𝑐 ( ) 𝑎, 𝑏, 𝑐∈𝑅
+
* 𝑎 + 𝑏 + 𝑐 = 1

 π
1

= π
0
𝑃 = 𝑎 𝑏 𝑐 ( ) 0 1 0 0 0 1 1 0 0 ( ) = 𝑐 𝑎 𝑏 ( )

 π
2

= π
1
𝑃 = 𝑐 𝑎 𝑏 ( ) 0 1 0 0 0 1 1 0 0 ( ) = 𝑏 𝑐 𝑎 ( )

 π
3

= π
2
𝑃 = 𝑏 𝑐 𝑎 ( ) 0 1 0 0 0 1 1 0 0 ( ) = 𝑎 𝑏 𝑐 ( )

On se retrouve dans le même cas de figure que précédemment et la suite  ne converge pas sauf si π
𝑛( )

 𝑎 = 𝑏 = 𝑐 = 1
3

On pourra remarquer que la seule solution de l’équation  est  et que si , la π = π𝑃 1
3  1

3  1
3  ( ) π

0
≠ 1

3  1
3  1

3  ( )
suite  ne converge pas. π

𝑛( )
 
Exemple 5 
Dans un jeu vidéo, si un joueur reçoit un coffre en or le premier jour, il aura chaque jour un coffre en or. S’il 
reçoit un coffre en argent, il recevra un coffre en platine ou en argent le jour suivant avec la même probabilité 
de 0,5. S’il reçoit un coffre en platine, il recevra un coffre en platine ou en argent le jour suivant avec la même 
probabilité de 0,5. On définit une suite de variables aléatoires  définies de la manière suivante : 𝑋

𝑛( )
𝑛∈𝑁

 si le joueur reçoit un coffre en argent le  jour. 𝑋
𝑛

= 1 𝑛 + 1 − 𝑖è𝑚𝑒
 si le joueur reçoit un coffre en platine le  jour. 𝑋

𝑛
= 2 𝑛 + 1 − 𝑖è𝑚𝑒

 si le joueur reçoit un coffre en or le  jour. 𝑋
𝑛

= 3 𝑛 + 1 − 𝑖è𝑚𝑒
On a ainsi défini une chaîne de Markov homogène de matrice de transition 

 𝑃 = 0, 5 0, 5 0 0, 5 0, 5 0 0 0 1 ( )
Remarquons que 

 𝑃2 = 0, 5 0, 5 0 0, 5 0, 5 0 0 0 1 ( )
Et par extension, 
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 ∀𝑛∈𝑁*, 𝑃𝑛 = 0, 5 0, 5 0 0, 5 0, 5 0 0 0 1 ( )
Posons alors  où  tels que  π

0
= 𝑎 𝑏 𝑐 ( ) 𝑎, 𝑏, 𝑐∈𝑅

+
* 𝑎 + 𝑏 + 𝑐 = 1

 π
𝑛

= π
0
𝑃𝑛 = 𝑎 𝑏 𝑐 ( ) 0, 5 0, 5 0 0, 5 0, 5 0 0 0 1 ( ) = 0, 5𝑎 + 0, 5𝑏 0, 5𝑎 + 0, 5𝑏 𝑐 ( )

La suite  converge vers  qui dépend de . π
𝑛( ) π = 0, 5𝑎 + 0, 5𝑏 0, 5𝑎 + 0, 5𝑏 𝑐 ( ) π

0
On notera que l’équation  admet une infinité de solutions de la forme  où  π = π𝑃 𝑎 𝑎 𝑐 ( ) 𝑎, 𝑐∈𝑅
 
Exemple 6 
Une fourmi se déplace sur un triangle équilatéral ABC. À chaque fois qu’elle arrive sur un sommet, elle repart 
vers un autre sommet avec la même probabilité de 1/2. On définit une suite de variables aléatoires  𝑋

𝑛( )
𝑛∈𝑁

définies de la manière suivante : 
 si la fourmi est sur le sommet A après  cheminements. 𝑋

𝑛
= 1 𝑛

 si la fourmi est sur le sommet B après  cheminements. 𝑋
𝑛

= 2 𝑛
 si la fourmi est sur le sommet C après  cheminements. 𝑋

𝑛
= 3 𝑛

On a ainsi défini une chaîne de Markov homogène de matrice de transition 
 𝑃 = 0 0, 5 0, 5 0, 5 0 0, 5 0, 5 0, 5 0 ( )

Remarquons que 

 𝑃2 = 0, 5 0, 25 0, 25 0, 25 0, 5 0, 25 0, 25 0, 25 0, 5 ( )
Nous sommes dans le cas d’application du théorème 1 donc  converge vers l’unique solution de l’équation π

𝑛( )
π = π𝑃⟺ 𝑎 𝑏 𝑐 ( ) = 𝑎 𝑏 𝑐 ( ) 0 0, 5 0, 5 0, 5 0 0, 5 0, 5 0, 5 0 ( )⟺ 𝑎 𝑏 𝑐 ( ) = 0, 5𝑏 + 0, 5𝑐 0, 5𝑎 + 0, 5𝑐 0, 5𝑎 + 0, 5𝑏 ( )⟺{𝑎
Or,  étant une loi de probabilité, π

 𝑎 + 𝑏 + 𝑐 = 1⟺𝑎 = 𝑏 = 𝑐 = 1
3

Donc  converge vers  π
𝑛( ) 1

3  1
3  1

3  ( )
Par ailleurs, si l’on veut connaître la probabilité de se retrouver au sommet A au bout de 5 déplacement à partir 
de A, il suffit de calculer 

 π
5

= π
0
𝑃5 = 1 0 0 ( )𝑃5 = 1 0 0 ( ) 10

32  11
32  11

32  11
32  10

32  11
32  11

32  11
32  10

32  ( ) = 10
32  11

32  11
32  ( )

Donc 

 𝑃 𝑋
5

= 1( ) = 10
32

 
 
 
Exemple 7 
Dans un jeu vidéo, un joueur reçoit un coffre en or ou un coffre en argent par jour. S’il reçoit un coffre en argent, 
la probabilité d’obtenir un coffre en or le jour suivant sera de 0,3. S’il reçoit un coffre en or, la probabilité 
d’obtenir un coffre en argent le jour suivant sera de 0,6. On définit une suite de variables aléatoires  𝑋

𝑛( )
𝑛∈𝑁

définies de la manière suivante : 
 si le joueur reçoit un coffre en argent le  jour. 𝑋

𝑛
= 1 𝑛 + 1 − 𝑖è𝑚𝑒

 si le joueur reçoit un coffre en or le  jour. 𝑋
𝑛

= 2 𝑛 + 1 − 𝑖è𝑚𝑒
On a ainsi défini une chaîne de Markov homogène de matrice de transition 

 𝑃 = 0, 7 0, 3 0, 6 0, 4 ( )
Nous sommes dans le cas d’application du théorème 1 donc  converge vers l’unique solution de l’équation π

𝑛( )
π = π𝑃⟺ 𝑎 𝑏 ( ) = 𝑎 𝑏 ( ) 0, 7 0, 3 0, 6 0, 4 ( )⟺ 𝑎 𝑏 ( ) = 0, 7𝑎 + 0, 6𝑏 0, 3𝑎 + 0, 4𝑏 ( )⟺{𝑎 = 0, 7𝑎 + 0, 6𝑏 𝑏 = 0, 3𝑎 +
Or,  étant une loi de probabilité, π

 𝑎 + 𝑏 = 1⟺3𝑏 = 1⟺𝑏 = 1
3

Donc  converge vers  π
𝑛( ) 2

3  1
3  ( )

On peut interpréter ce résultat en disant que sur le long terme, un joueur obtient un coffre en or un jour sur 
trois en moyenne. 
On peut aussi par exemple calculer la probabilité d’obtenir un coffre en or le 4e jour sachant que l’on a reçu un 
coffre en or le premier jour. 
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 π
3

= π
0
𝑃3 = 0 1 ( )𝑃3 = 0 1 ( ) 0, 7 0, 3 0, 6 0, 4 ( )3 = 0 1 ( ) 0, 667 0, 333 0, 666 0, 334 ( ) = 0, 666 0, 334 ( )

Donc 
 𝑃 𝑋

3
= 2( ) = 0, 334

On peut remarquer que la probabilité trouvée est très proche de la probabilité limite (la convergence est très 
rapide) et très peu différente si le joueur avait obtenu un coffre en argent le premier jour. 
 
III. Lien avec les graphes 
On peut associer une chaîne de Markov possédant un nombre fini d’états à une matrice de transition finie et 
donc à un graphe orienté pondéré c’est-à-dire un graphe où chaque arête entre deux sommets  et  possède un 𝑖 𝑗
poids différent qui correspond à la probabilité . 𝑝

𝑖,𝑗
= 𝑃 𝑋

1
= 𝑥

𝑗
|𝑋

0
= 𝑥

𝑖( )
On peut ainsi reprendre les exemples précédents. 

Exemple 4 5 6 7 

Graphe 

 
 

 
 

 
Exemple 8 Les urnes d’Ehrenfest 
Le physicien Paul Ehrenfest développa en 1907 un modèle pour montrer qu’un modèle microscopique 
réversible pouvait conduire à un modèle macroscopique irréversible. 
On dispose de 2 urnes A et B et de  boules dans ces 2 urnes. À chaque étape, on choisit une des  boules au 𝑘 𝑘
hasard et on la met dans l’autre urne. On note  le nombre de boules contenues dans l’urne A après  étapes. 𝑋

𝑛
𝑛

On a ainsi défini une chaîne de Markov homogène de matrice de transition 
 𝑃 = 0 1 0 ···  0 0, 5 0 0, 5 ⋱ ⋮  0 ⋱ ⋱ ⋱ 0 ⋮  ⋱ 0, 5 0 0, 5 0 ···  0 1 0 ( )

En remarquant que  où 𝑃 = 𝑝
𝑖,𝑗( ) ∈ 𝑀

𝑘+1
𝑅( )

 ∀𝑖, 𝑗∈⟦1, 𝑘 + 1⟧, 𝑝
𝑖,𝑗

= 𝑃 𝑋
1

= 𝑗 − 1|𝑋
0

= 𝑖 − 1( )
Prenons par exemple le cas  𝑘 = 2

 𝑃 = 0 1 0 0, 5 0 0, 5 0 1 0 ( )
Le graphe associé est le suivant. 

 𝑃2 = 0, 5 0 0, 5 0 1 0 0, 5 0 0, 5 ( )
On remarque ensuite que  et donc, par une 𝑃3 = 𝑃
récurrence évidente, soit , 𝑝 ∈ 𝑁*

 𝑃2𝑝 = 𝑃2

 𝑃2𝑝+1 = 𝑃
Les conditions du théorème 1 ne sont pas remplies et  ne converge pas sauf si  est un état π

𝑛( ) π
0

= 𝑎 𝑏 𝑐 ( )
stable, c’est-à-dire si 

 π
0

= π
0
𝑃⟺ 𝑎 𝑏 𝑐 ( ) = 0, 5𝑏 𝑎 + 𝑐 0, 5𝑏 ( )

 ⟺{𝑎 = 0, 5𝑏 𝑏 = 𝑎 + 𝑐 𝑐 = 0, 5𝑏 ⟺𝑎 = 𝑐 = 0, 5𝑏
Or,  étant une loi de probabilité, π

 𝑎 + 𝑏 + 𝑐 = 1⟺2𝑏 = 1
On en déduit que  est le seul état stable. π

0
= 1

4  1
2  1

4  ( )
On remarque par ailleurs que si l’on prend des valeurs de  de plus en plus grandes, le système tend à se 𝑘
stabiliser malgré tout autour de  justifiant l’hypothèse de départ. 𝑘/2
Voici un programme Python pour simuler le modèle d’Ehrenfest. 

import random 
import matplotlib.pyplot as plt 
 
def ehrenfest(n_boules, n_etapes): 
    urne_a = n_boules  # Initialement, toutes les boules sont dans l'urne A 
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    urne_b = 0 
    historique_a = [urne_a] 
 
    for _ in range(n_etapes): 
        # Choisir une boule au hasard 
        boule_choisie = random.randint(1, n_boules) 
 
        # Déplacer la boule 
        if boule_choisie <= urne_a: 
            urne_a -= 1 
            urne_b += 1 
        else: 
            urne_a += 1 
            urne_b -= 1 
 
        historique_a.append(urne_a) 
 
    return historique_a 
 
# Paramètres de la simulation 
n_boules = 1000 
n_etapes = 5000 
 
# Exécuter la simulation 
historique_a = ehrenfest(n_boules, n_etapes) 
 
# Tracer les résultats 
plt.plot(historique_a) 
plt.xlabel("Étape") 
plt.ylabel("Nombre de boules dans l'urne A") 
plt.title("Modèle d'Ehrenfest") 
plt.grid(True) 
plt.show() 

Voici les résultats obtenus si l’urne A contient toutes les boules au départ et pour respectivement 
 𝑘 = 10, 𝑘 = 100, 𝑘 = 1 000, 𝑘 = 10 000
 𝑛 = 50, 𝑛 = 500, 𝑛 = 5 000, 𝑛 = 50 000
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