7.03 Applications of Circles

Equation of a Circle Video Click Here

The equation of a circle was created using the _____ Theorem.

Remember that the Pythagorean Theorem is $a^2 + b^2 = c^2$, where a and b are _____ of a right triangle and c is the

Equation of a circle

where (h, k) is the _____ and r is the _____:

$$(x - h)^2 + (y - k)^2 = r^2$$

Identifying the Center and Radius Video Click Here

Given an equation of a circle, such as

 $(x - 3)^2 + (y - 4)^2 = 8^2$, the center is (_____, ____) and the radius is _____.

NOTICE: The equation in its original form uses

signs. This makes the point coming from that ______. If the equation has a positive sign, then that would make h or k negative.

Practice 1 Video Click Here

An equation of a circle is given: $(x + 6)^2 + (y - 7)^2 = 81$. Find the center and radius of the circle.

Write the equation of a circle with center at (-3, -5) and a radius of 5 units.

Write the equation of a circle with center at (-3, -5) and a point on the circle at (1, -2).

O a manufaction of the O access Viola	• Oliala Harra	
Completing the Square Video Click Here		
The center and radius of a circle can be found when a parti to:	al equation is given. Here are the steps	
Step 1 [original equation]: $x^2 - 4x + y^2 - 2y = 4$	Step 4 [simplify the equation]: $(x^2 - 4x + 4) + (y^2 - 2y + 1) =$	
Step 2 [group like terms]: () + () = 4	Step 5 [factor each quadratic]: (
Step 3 [complete the quadratics]: $(x^2 - 4x + \underline{\hspace{1cm}}) + (y^2 - 2y + \underline{\hspace{1cm}}) = 4 + (\underline{\hspace{1cm}} + \underline{\hspace{1cm}})$		
	Step 6 [identify the center and radius]:	
	Center =	
	Radius =	
Practice 2 Video Click Here		

Using the following equation, find the center and radius of the circle: $x^2 + y^2 + 2x - 4y - 20 = 0$

Center: Radius:

Graphing Circles Video Click Here

First, rewrite the equation in standard form $(x - h)^2 + (y - k)^2 = r^2$ to find the _____ and

____-

Next, plot the _____r point. Then, from the center, use the _____ to count the units up, down, left, and right to find four points on the circle itself.

Connect all four points with a circle and you have graphed the circle! Remember to use a compass for an accurate circle.

Explain how to graph the circle with the equation below by hand on the coordinate plane.

$$(x-5)^2 + (y-3)^2 = 9$$

Find the center and radius of circle A shown below.

Domain and Range Video Click Here

The center (\hbar, k) and radius, r are key features of a circle. The circle is a relation and will have a domain and a range. The domain will refer to the _____ and the range will refer to the _____.

The domain is $h - r \le x \le h + r$ and the range is $k - r \le y \le k + r$.

Example: Identify the domain and range of a circle with center (1,3) and radius 4.

domain: $\underline{\hspace{1cm}} \le x \le \underline{\hspace{1cm}}$ range: $\underline{\hspace{1cm}} \le y \le \underline{\hspace{1cm}}$

Practice 3 Video Click Here

Write the equation of a circle with center (2, -5) and a diameter of 6 units and explain how to graph the circle by hand on the coordinate plane. Then identify the domain and range of the circle.

The two circles are similar. A _____ for both circles is marked "x."

NOTICE: As the length of the radius

______, so does the length of its corresponding arc.

The arc length of a circle can be determined by taking the formula for the _____ of a circle and multiplying it by the _____ divided by 360°.

Arc length = $2\pi r * (\frac{x}{360})$

In similar circles, the arc length is

to the radius.

Area of a Sector Video Cli	ck Here
The two circles are similar. The for each circle can be found using the following formula:	S_2
$Area = \pi r^2$	$r_1 \sim s_1$
The area of a sector of a circle is the 2-dimensional space inside the pie-shaped area created by a	r ₂
The area of a sector of a circle can be determined by taking the formula for the	
multiplying it by the	
divided by 360°.	
Area of a Sector = $\pi r^2 * \left(\frac{x}{360}\right)$	
In similar circles, the area of a sector is	
to the radius.	

Practice:

Question 1 Video Click Here

A bicycle tire in the shape of a wheel has a radius of 10 feet. The wheel has 8 spokes attached to the center of the wheel.

What is the central angle?

What is the arc length?

What is the area of a sector between any two spokes?

Question 2 Video <u>Click Here</u>		
Using the following equation, find the center and radius of the circle.		
$x^2 - 4x + y^2 + 8y = -4$		

Ready to complete the assignment for 7.03?

Click here: 7.03 Activity Template