
UNIT - I

C: It is a structured programming language that is machine-independent and extensively used to
write various applications, Operating Systems like Windows, and many other complex programs
like Oracle database, Git, Python interpreter, and more.

History of C Language

C programming language was developed in 1972 by Dennis Ritchie at bell laboratories of
AT&T (American Telephone & Telegraph), located in the U.S.A. Dennis Ritchie is known as the
founder of the c language. It was developed to overcome the problems of previous languages
such as B, BCPL, etc.

Initially, C language was developed to be used in UNIX operating system. It inherits many
features of previous languages such as B and BCPL.

Language Year Developed By

Algol 1960 International Group

BCPL 1967 Martin Richard

B 1970 Ken Thompson

Traditional C 1972 Dennis Ritchie

K & R C 1978 Kernighan & Dennis Ritchie

ANSI C 1989 ANSI Committee

ANSI/ISO C 1990 ISO Committee

C99 1999 Standardization Committee

Features of C Language

C is the widely used language. It provides many features that are given below.

1.​ Simple

2.​ Machine Independent or Portable

3.​ Mid-level programming language

4.​ structured programming language

5.​ Rich Library

6.​ Memory Management

7.​ Fast Speed

8.​ Pointers

9.​ Recursion

10.​Extensible

Structure of a C

A C program is divided into different sections. There are six main sections to a basic c program.

Documentation Section

The documentation section is the part of the program where the programmer gives the details

associated with the program. He usually gives the name of the program, the details of the author

and other details like the time of coding and description. It gives anyone reading the code the

overview of the code.

Example

/**

* File Name: Helloworld.c

* Author: Manthan Naik

* date: 09/08/2019

* description: a program to display hello world

* ​ no input needed

https://www.edureka.co/blog/c-data-structures

*/

Link Section

This part of the code is used to declare all the header files that will be used in the program. This

leads to the compiler being told to link the header files to the system libraries.

Example

#include<stdio.h>
Definition Section

In this section, we define different constants. The keyword define is used in this part.

Example

#define PI=3.14

Global Declaration Section

This part of the code is the part where the global variables are declared. All the global variable

used are declared in this part. The user-defined functions are also declared in this part of the

code.

Example

float area(float r);

int a=7;
Main Function Section

Every C-programs needs to have the main function. Each main function contains 2 parts. A

declaration part and an Execution part. The declaration part is the part where all the variables are

declared. The execution part begins with the curly brackets and ends with the curly close bracket.

Both the declaration and execution part are inside the curly braces.

Example

int main(void)

{

int a=10;

printf(" %d", a);

return 0;

}

Sub Program Section

All the user-defined functions are defined in this section of the program.

Example

int add(int a, int b)

{

return a+b;

}

C Tokens

C Tokens are the smallest building block or smallest unit of a C program.
C Supports Six Types of Tokens:

●​ Identifiers
●​ Keywords
●​ Constants
●​ Strings
●​ Operators
●​ Special Symbols

Identifier

Identifiers are names given to different entities such as constants, variables, structures, functions,
etc.
Eg:
int amount;

double totalbalance;
Rules:

1.​ An identifier can only have alphanumeric characters (a-z , A-Z , 0-9) (i.e. letters & digits)
and underscore(_) symbol.

2.​ Identifier names must be unique
3.​ The first character must be an alphabet or underscore.
4.​ You cannot use a keyword as identifiers.
5.​ Only the first thirty-one (31) characters are significant.

https://www.w3schools.in/c-tutorial/identifiers/
https://www.w3schools.in/c-tutorial/keywords/
https://www.w3schools.in/c-tutorial/constants/
https://www.w3schools.in/c-tutorial/strings/
https://www.w3schools.in/c-tutorial/operators/

6.​ It must not contain white spaces.
7.​ Identifiers are case-sensitive.

Keywords

Reserved words in C library and used to perform an internal operation. The meaning and
working of these keywords are already known to the compiler.

A list of 32 reserved keywords in c language is given below:

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Constants

Constants in C are the fixed values that are used in a program, and its value remains the same
during the entire execution of the program.

1.​ Constants are also called literals.
2.​ Constants can be any of the data types.
3.​ It is considered best practice to define constants using only upper-case names.

Operators

C operators are symbols that are used to perform mathematical or logical manipulations. The C
programming language is rich with built-in operators. Operators take part in a program for
manipulating data and variables and form a part of the mathematical or logical expressions.
C programming language offers various types of operators having different functioning
capabilities.

●​ Arithmetic Operators
●​ Relational Operators

https://www.w3schools.in/c-tutorial/data-types/

●​ Logical Operators
●​ Assignment Operators
●​ Increment and Decrement Operators
●​ Conditional Operator
●​ Bitwise Operators
●​ Special Operators

Arithmetic Operators

Arithmetic Operators are used to performing mathematical calculations like addition (+),

subtraction (-), multiplication (*), division (/) and modulus (%).

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

Increment and Decrement Operators are useful operators generally used to minimize the

calculation, i.e. ++x and x++ means x=x+1 or -x and x−−means x=x-1. But there is a slight

difference between ++ or −− written before or after the operand. Applying the pre-increment first

add one to the operand and then the result is assigned to the variable on the left whereas

post-increment first assigns the value to the variable on the left and then increment the operand.

Operator Description

++ Increment

−− Decrement

Relational operators are used to comparing two quantities or values.

Operator Description

== Is equal to

!= Is not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Logical Operators

C provides three logical operators when we test more than one condition to make decisions.

These are: && (meaning logical AND), || (meaning logical OR) and ! (meaning logical NOT).

Operator Description

&& And operator. It performs logical conjunction of two expressions. (if both
expressions evaluate to True, result is True. If either expression evaluates to
False, the result is False)

|| Or operator. It performs a logical disjunction on two expressions. (if either or
both expressions evaluate to True, the result is True)

! Not operator. It performs logical negation on an expression.

Bitwise Operators

C provides a special operator for bit operation between two variables.

Operator Description

<< Binary Left Shift Operator

>> Binary Right Shift Operator

~ Binary Ones Complement Operator

& Binary AND Operator

^ Binary XOR Operator

| Binary OR Operator

Assignment Operators

Assignment operators applied to assign the result of an expression to a variable. C has a

collection of shorthand assignment operators.

Operator Description

= Assign

+= Increments then assign

-= Decrements then assign

*= Multiplies then assign

/= Divides then assign

%= Modulus then assign

<<= Left shift and assign

>>= Right shift and assign

&= Bitwise AND assign

^= Bitwise exclusive OR and assign

|= Bitwise inclusive OR and assign

Conditional Operator

C offers a ternary operator which is the conditional operator (?: in combination) to construct

conditional expressions.

Operator Description

? : Conditional Expression

Special Operators

C supports some special operators

Operator Description

sizeof() Returns the size of a memory location.

& Returns the address of a memory location.

* Pointer to a variable.

Data Types in C

​​ A data type specifies the type of data that a variable can store such as integer, floating,
character, etc.

​​
​​ There are the following data types in C language.

Types Data Types

Basic Data Type int, char, float, double

Derived Data Type array, pointer, structure, union

Enumeration Data Type enum

Void Data Type void

​​ Basic Data Types
​​ The basic data types are integer-based and floating-point based. C language supports both signed

and unsigned literals.
​​ The memory size of the basic data types may change according to 32 or 64-bit operating system.

Data Types Memory
Size

Range

char 1 byte −128 to 127

signed char 1 byte −128 to 127

unsigned char 1 byte 0 to 255

short 2 byte −32,768 to 32,767

signed short 2 byte −32,768 to 32,767

unsigned short 2 byte 0 to 65,535

int 2 byte −32,768 to 32,767

signed int 2 byte −32,768 to 32,767

unsigned int 2 byte 0 to 65,535

short int 2 byte −32,768 to 32,767

signed short int 2 byte −32,768 to 32,767

unsigned short int 2 byte 0 to 65,535

long int 4 byte -2,147,483,648 to 2,147,483,647

signed long int 4 byte -2,147,483,648 to 2,147,483,647

unsigned long int 4 byte 0 to 4,294,967,295

float 4 byte

double 8 byte

long double 10 byte

CONTROL STRUCTURES IN C

C if else Statement

The if-else statement in C is used to perform the operations based on some specific condition.
The operations specified in if block are executed if and only if the given condition is true. There
are the following variants of if statement in C language.

●​ If statement
●​ If-else statement
●​ If else-if ladder
●​ Nested if

If Statement

The if statement is used to check some given condition and perform some operations depending
upon the correctness of that condition. It is mostly used in the scenario where we need to perform
the different operations for the different conditions. The syntax of the if statement is given below.

if(expression){

//code to be executed

}

Flowchart of if statement in C

If-else Statement

The if-else statement is used to perform two operations for a single condition. The if-else
statement is an extension to the if statement using which, we can perform two different
operations, i.e., one is for the correctness of that condition, and the other is for the incorrectness
of the condition. Here, we must notice that if and else block cannot be executed simultaneously.
Using if-else statement is always preferable since it always invokes an otherwise case with every
if condition. The syntax of the if-else statement is given below.

if(expression){

//code to be executed if condition is true

}else{

//code to be executed if condition is false

}

Flowchart of the if-else statement in C

​​

If else-if ladder Statement

The if-else-if ladder statement is an extension to the if-else statement. It is used in the scenario
where there are multiple cases to be performed for different conditions. In if-else-if ladder
statement, if a condition is true then the statements defined in the if block will be executed,
otherwise if some other condition is true then the statements defined in the else-if block will be
executed, at the last if none of the condition is true then the statements defined in the else block
will be executed. There are multiple else-if blocks possible. It is similar to the switch case
statement where the default is executed instead of else block if none of the cases is matched.

if(condition1){
//code to be executed if condition1 is true

}else if(condition2){
//code to be executed if condition2 is true

 }else if(condition3){
//code to be executed if condition3 is true

}

...
else{

//code to be executed if all the conditions are false
 }

Flowchart of else-if ladder statement in C

C Switch Statement

The switch statement in C is an alternate to if-else-if ladder statement which allows us to execute
multiple operations for the different possibles values of a single variable called switch variable.
Here, We can define various statements in the multiple cases for the different values of a single
variable.

Syntax of switch statement in c language is given below:

switch(expression){
case value1:

 ​ //code to be executed;
 ​ break; //optional

case value2:
 ​ //code to be executed;
 ​ break; //optional

......

https://www.javatpoint.com/c-programming-language-tutorial

 default:
 code to be executed if all cases are not matched;
}

Rules for switch statement in C language

1) The switch expression must be of an integer or character type.
2) The case value must be an integer or character constant.
3) The case value can be used only inside the switch statement.
4) The break statement in switch case is not must. It is optional. If there is no break statement
found in the case, all the cases will be executed present after the matched case. It is known as fall
through the state of C switch statement.

Flowchart of switch statement in C

UNIT - II

C Loops

The looping can be defined as repeating the same process multiple times until a specific
condition satisfies. There are three types of loops used in the C language. In this part of the
tutorial, we are going to learn all the aspects of C loops.

Advantage of loops in C

1) It provides code reusability.

2) Using loops, we do not need to write the same code again and again.

3) Using loops, we can traverse over the elements of data structures (array or linked lists).

Types of C Loops

There are three types of loops in C language that is given below:

1.​ do while

2.​ while

3.​ for

do while loop in C

The do while loop is a post tested loop. Using the do-while loop, we can repeat the execution of
several parts of the statements. The do-while loop is mainly used in the case where we need to
execute the loop at least once. The do-while loop is mostly used in menu-driven programs where
the termination condition depends upon the end user.

do while loop syntax

The syntax of the C language do-while loop is given below:

do{

//code to be executed

}while(condition);

Flowchart of do while loop

https://www.javatpoint.com/c-programming-language-tutorial

Eg:#include<stdio.h>

int main(){

int i=1;

do{

printf("%d \n",i);

i++;

}while(i<=10);

return 0;

}

while loop in C

While loop is also known as a pre-tested loop. In general, a while loop allows a part of the code
to be executed multiple times depending upon a given boolean condition. It can be viewed as a
repeating if statement. The while loop is mostly used in the case where the number of iterations
is not known in advance.

Syntax of while loop in C language

The syntax of while loop in c language is given below:

while(condition){

//code to be executed

}

Flowchart of while loop in C

Example of the while loop in C language

#include<stdio.h>

int main(){

int i=1;

while(i<=10){

printf("%d \n",i);

i++;

}

return 0;

}

for loop in C

The for loop in C language is used to iterate the statements or a part of the program several
times. It is frequently used to traverse the data structures like the array and linked list.

Syntax of for loop in C

The syntax of for loop in c language is given below:

for(Expression 1; Expression 2; Expression 3){

//code to be executed

}

Flowchart of for loop in C

C for loop Examples

#include<stdio.h>

int main(){

int i=0;

for(i=1;i<=10;i++){

printf("%d \n",i);

}

return 0;

}

C break statement

The break is a keyword in C which is used to bring the program control out of the loop. The
break statement is used inside loops or switch statement. The break statement breaks the loop
one by one, i.e., in the case of nested loops, it breaks the inner loop first and then proceeds to
outer loops. The break statement in C can be used in the following two scenarios:

1.​ With switch case

2.​ With loop

Syntax:

1.​ //loop or switch case

2.​ break;

Flowchart of break in c

Example

#include<stdio.h>

#include<stdlib.h>

void main ()

{

 int i;

 for(i = 0; i<10; i++)

 {

 printf("%d ",i);

 if(i == 5)

 break;

 }

 printf("came outside of loop i = %d",i);

}

C continue statement

The continue statement in C language is used to bring the program control to the beginning of
the loop. The continue statement skips some lines of code inside the loop and continues with the
next iteration. It is mainly used for a condition so that we can skip some code for a particular
condition.

Syntax:

//loop statements

continue;

//some lines of the code which is to be skipped

Eg:#include<stdio.h>

void main ()
{
 int i = 0;
 while(i!=10)
 {
 printf("%d", i);
 continue;
 i++;
 }

}

C goto statement

The goto statement is known as jump statement in C. As the name suggests, goto is used to
transfer the program control to a predefined label. The goto statment can be used to repeat some
part of the code for a particular condition. It can also be used to break the multiple loops which
can't be done by using a single break statement. However, using goto is avoided these days since
it makes the program less readable and complecated.

Syntax:

label:

//some part of the code;

goto label;

goto example

#include <stdio.h>

int main()

{

 int num,i=1;

 printf("Enter the number whose table you want to print?");

 scanf("%d",&num);

 table:

 printf("%d x %d = %d\n",num,i,num*i);

 i++;

 if(i<=10)

 goto table;

}

ARRAYS
It uses only a single variable name for storing one data item. A new data structure is used called
arrays.
(or)
In C language, arrays are referred to as structured data types. An array is defined as a finite
ordered collection of homogenous data, stored in contiguous memory locations.

1.​ An array is a linear and homogeneous data structure
2.​ An array permits homogeneous data. It means that similar types of elements are stored

contiguously in the memory under one variable name.
3.​ An array can be declared of any standard or custom data type.

Declaring an Array

Syn: data-type variable-name[size];
Eg: int mark[5];

Pictorial representation of C Programming Arrays

Declare an Array

https://www.studytonight.com/c/datatype-in-c.php

Initialization an Array

Eg: int mark[5]={19,10,8,17,9};

Initialize an Array

Types of Arrays

Single Dimensional Array
In c programming language, single dimensional arrays are used to store list of values of same
datatype. In other words, single dimensional arrays are used to store a row of values. In single
dimensional array, data is stored in linear form. Single dimensional arrays are also called as
one-dimensional arrays, Linear Arrays or simply 1-D Arrays.

Declaration of Single Dimensional Array

General syntax for declaring a single dimensional array...

datatype arrayName [size] ;

Example Code

int rollNumbers [60] ;

The above declaration of single dimensional array reserves 60 contiguous memory locations of 2
bytes each with the name rollNumbers and tells the compiler to allow only integer values into
those memory locations.

Initialization of Single Dimensional Array

The following general syntax for declaring and initializing a single dimensional array with size
and initial values.

datatype arrayName [size] = {value1, value2, ...} ;

Example Code

int marks [6] = { 89, 90, 76, 78, 98, 86 } ;

Multi Dimensional Array
An array of arrays is called a multi dimensional array. In simple words, an array created with
more than one dimension (size) is called a multi dimensional array. Multi dimensional array can
be of two dimensional array or three dimensional array or four dimensional array or more...

Multi dimensional array is two dimensional array. The 2-D arrays are used to store data in the
form of tables.

Declaration of Two Dimensional Array

We use the following general syntax for declaring a two dimensional array...

datatype arrayName [rowSize] [columnSize] ;

Example Code

int matrix_A [2][3] ;

The above declaration of two dimensional array reserves 6 contiguous memory locations of 2
bytes each in the form of 2 rows and 3 columns.

Initialization of Two Dimensional Array

The following general syntax for declaring and initializing a two dimensional array with a
specific number of rows and columns with initial values.

datatype arrayName [rows][columns] = {{r1c1value, r1c2value, ...},{r2c1, r2c2,...}...} ;

Example Code

int matrix_A [2][3] = { {1, 2, 3},{4, 5, 6} } ;

The above declaration of two-dimensional array reserves 6 contiguous memory locations of 2
bytes each in the form of 2 rows and 3 columns. And the first row is initialized with values 1, 2
& 3 and second row is initialized with values 4, 5 & 6.

Example Code

int matrix_A [2][3] = { {1, 2, 3}, {4, 5, 6} } ;

UNIT - III

String in C

A String in C is a collection of characters in a linear sequence. ‘C’ always treats a string a single
data even though it contains whitespaces. A single character is defined using single quote
representation. A string is represented using double quote marks.
Example: "Welcome to the world of programming!"

‘C’ provides standard library <string.h> that contains many functions which can be used to
perform complicated operations easily on Strings in C.

Declaration of strings: Declaring a string is as simple as declaring a one-dimensional array.
Basic syntax for declaring a string.

datatype str_name[size];

In the above syntax str_name is any name given to the string variable and size is used to define
the length of the string, i.e the number of characters strings will store which is the Null character
(‘\0’) used to indicate the termination of string which differs strings from normal character
arrays.

Initializing a String: A string can be initialized in different ways.

To declare a string with name as str and initialize it with “PVKNGC”.

1. char str[] = "PVKNGC";

2. char str[50] = "PVKNGC";

3. char str[] = {'P','V','K','N','G','C','\0'};

4. char str[14] = {'P','V','K','N','G','C','\0'};

C – String functions
1. STRLEN(): In C programming, we use strlen() to find the length of the string. String handling
function strlen() returns the number of characters in string.

Syntax: integer_variable = strlen(string or string_variable);
Examples:

 char str[30];

 int len;

 printf("Enter string:\n");

 gets(str);

 len = strlen(str);

 printf("Length of given string is: %d", len);

2. STRCPY(): String handling function strcpy() is used to copy content of one string variable to
another string variable i.e. strcpy(string2, string1) copies content of string1 to string2.

Syntax: integer_variable = strcpy (string2, string1);
Examples:

char str1[30], str2[30];

 printf("Enter string:\n");

 gets(str1);

 strcpy(str2, str1);

 printf("Coped string is: %s”, str2);

3. STRCMP(): In C programming, string handling function strcmp() is used to compare two
strings. This function returns 0 if two strings are same otherwise it returns some integer value
other than 0.

Syntax: integer_variable = strcmp(string1, string2);

Examples:

char str1[40], str2[40];

 int d;

printf("Enter first string:\n");

gets(str1);

 printf("Enter second string:\n");

 gets(str2);

 d = strcmp(str1, str2);

 if(d==0)

 {

 printf("Given strings are same.");

 }

 else

 {

 printf("Given strings are different.");

 }

4. STRCAT():String handling function strcat() is used to concatenate two strings. Concatenation
is the process of merging content of one string to another string. Function strcat(str1, str2)
concatenates content of string str2 after content of string str1.

Syntax: integer_variable = strcat(string1, string2);

Examples:

char str1[50], str2[50];

 printf("Enter first string:\n");

 gets(str1);

 printf("Enter second string:\n");

 gets(str2);

 strcat(str1,str2);

 printf("Concatenated string is: %s", str1);

5. STRREV():String handling function strrev() is used to reverse string in C programming
language. Function strrev(str1) reverses the content of string str1.

Syntax: integer_variable =strrev(string);
Examples:

char name[40];

printf("Enter your name: ");

gets(name);

strrev(name);

printf("Reversed name is: %s", name);

6. STRUPR():String handling function strupr() is used to convert all lower case letter in string to
upper case i.e. strlwr(str) converts all lower case letter in string str to upper case.

Syntax: integer_variable =strupr(string);

Examples:

char str[40];

 printf("Enter string:\n");

 gets(str);

 strupr(str);

 printf("String in uppercase is:");

 puts(str);

7. STRLWR():String handling function strlwr() is used to convert all upper case letter in string to
lower case i.e. strlwr(str) converts all upper case letter in string str to lowercase.

Syntax: integer_variable =strlwr(string);
Examples:

char str[40];

 printf("Enter string:\n");

 gets(str);

 strlwr(str);

 printf("String in lowercase is:");

 puts(str);

C Functions

In c, a large program into the basic building blocks known as function. The function contains the
set of programming statements enclosed by {}. A function can be called multiple times to
provide reusability and modularity to the C program. In other words, we can say that the
collection of functions creates a program. The function is also known as procedure or subroutine
in other programming languages.

Advantage of functions in C

There are the following advantages of C functions.

●​ By using functions, we can avoid rewriting the same logic/code again and again in a

program.

●​ We can call C functions any number of times in a program and from any place in a

program.

●​ We can track a large C program easily when it is divided into multiple functions.

●​ Reusability is the main achievement of C functions.

●​ Function calling is always overhead in a C program.

Function Aspects

There are three aspects of a C function.

●​ Function declaration: A function must be declared globally in a c program to tell the

compiler about the function name, function parameters, and return type.

●​ Function call: Function can be called from anywhere in the program. The parameter list

must not differ in function calling and function declaration. Pass the same number of

functions as it is declared in the function declaration.

●​ Function definition: It contains the actual statements which are to be executed. It is the

most important aspect to which the control comes when the function is called, only one

value can be returned from the function.

SN C function aspects Syntax

1 Function declaration return_type function_name (argument list);

2 Function call function_name (argument_list)

3 Function definition return_type function_name (argument list){function body;}

The syntax of creating function in c language is given below:

1.​ return_type function_name(data_type parameter...){

2.​ //code to be executed

3.​ }

Types of Functions

There are two types of functions in C programming:

1.​ Library Functions are the functions which are declared in the C header files such as

scanf(), printf(), gets(), puts(), ceil(), floor() etc.

2.​ User-defined functions are the functions which are created by the C programmer, so that

they can use it many times. It reduces the complexity of a big program and optimizes the

code.

Return Value

A C function may or may not return a value from the function. To return any value from the
function, use void for the return type.

Example without return value:

1.​ void hello(){

2.​ printf("hello c");

3.​ }

To return any value from the function, use any data type such as int, long, char, etc. The return
type depends on the value to be returned from the function.

Example with return value:

1.​ int get(){

2.​ return 10;

3.​ }

In the above example, we have to return 10 as a value, so the return type is int. To return
floating-point value (e.g., 10.2, 3.1, 54.5, etc), use float as the return type of the method.

1.​ float get(){

2.​ return 10.2;

3.​ }

Different aspects of function calling

A function may or may not accept any argument. It may or may not return any value. Based on
these facts, There are four different aspects of function calls.

●​ function without arguments and without return value

●​ function without arguments and with return value

●​ function with arguments and without return value

●​ function with arguments and with return value

Example for Function without argument and return value

Example 1

1.​ #include<stdio.h>

2.​ void printName();

3.​ void main ()

4.​ {

5.​ printf("Hello ");

6.​ printName();

7.​ }

8.​ void printName()

9.​ {

10.​ printf("Javatpoint");

11.​}

Example 2

1.​ #include<stdio.h>

2.​ void sum();

3.​ void main()

4.​ {

5.​ printf("\nGoing to calculate the sum of two numbers:");

6.​ sum();

7.​ }

8.​ void sum()

9.​ {

10.​ int a,b;

11.​ printf("\nEnter two numbers");

12.​ scanf("%d %d",&a,&b);

13.​ printf("The sum is %d",a+b);

14.​}

Example for Function without argument and with return value

Example 1

1.​ #include<stdio.h>

2.​ int sum();

3.​ void main()

4.​ {

5.​ int result;

6.​ printf("\nGoing to calculate the sum of two numbers:");

7.​ result = sum();

8.​ printf("%d",result);

9.​ }

10.​int sum()

11.​{

12.​ int a,b;

13.​ printf("\nEnter two numbers");

14.​ scanf("%d %d",&a,&b);

15.​ return a+b;

16.​}

Example 2: program to calculate the area of the square

1.​ #include<stdio.h>

2.​ int sum();

3.​ void main()

4.​ {

5.​ printf("Going to calculate the area of the square\n");

6.​ float area = square();

7.​ printf("The area of the square: %f\n",area);

8.​ }

9.​ int square()

10.​{

11.​ float side;

12.​ printf("Enter the length of the side in meters: ");

13.​ scanf("%f",&side);

14.​ return side * side;

15.​}

Example for Function with argument and without return value

Example 1

1.​ #include<stdio.h>

2.​ void sum(int, int);

3.​ void main()

4.​ {

5.​ int a,b,result;

6.​ printf("\nGoing to calculate the sum of two numbers:");

7.​ printf("\nEnter two numbers:");

8.​ scanf("%d %d",&a,&b);

9.​ sum(a,b);

10.​}

11.​void sum(int a, int b)

12.​{

13.​ printf("\nThe sum is %d",a+b);

14.​}

Example 2: program to calculate the average of five numbers.

1.​ #include<stdio.h>

2.​ void average(int, int, int, int, int);

3.​ void main()

4.​ {

5.​ int a,b,c,d,e;

6.​ printf("\nGoing to calculate the average of five numbers:");

7.​ printf("\nEnter five numbers:");

8.​ scanf("%d %d %d %d %d",&a,&b,&c,&d,&e);

9.​ average(a,b,c,d,e);

10.​}

11.​void average(int a, int b, int c, int d, int e)

12.​{

13.​ float avg;

14.​ avg = (a+b+c+d+e)/5;

15.​ printf("The average of given five numbers : %f",avg);

16.​}

Example for Function with argument and with return value

Example 1

1.​ #include<stdio.h>

2.​ int sum(int, int);

3.​ void main()

4.​ {

5.​ int a,b,result;

6.​ printf("\nGoing to calculate the sum of two numbers:");

7.​ printf("\nEnter two numbers:");

8.​ scanf("%d %d",&a,&b);

9.​ result = sum(a,b);

10.​ printf("\nThe sum is : %d",result);

11.​}

12.​int sum(int a, int b)

13.​{

14.​ return a+b;

15.​}

Example 2: Program to check whether a number is even or odd

1.​ #include<stdio.h>

2.​ int even_odd(int);

3.​ void main()

4.​ {

5.​ int n,flag=0;

6.​ printf("\nGoing to check whether a number is even or odd");

7.​ printf("\nEnter the number: ");

8.​ scanf("%d",&n);

9.​ flag = even_odd(n);

10.​ if(flag == 0)

11.​ {

12.​ printf("\nThe number is odd");

13.​ }

14.​ else

15.​ {

16.​ printf("\nThe number is even");

17.​ }

18.​}

19.​int even_odd(int n)

20.​{

21.​ if(n%2 == 0)

22.​ {

23.​ return 1;

24.​ }

25.​ else

26.​ {

27.​ return 0;

28.​ }

29.​}

C Library Functions

Library functions are the inbuilt function in C that are grouped and placed at a common place
called the library. Such functions are used to perform some specific operations. For example,
printf is a library function used to print on the console. The library functions are created by the
designers of compilers. All C standard library functions are defined inside the different header
files saved with the extension .h. We need to include these header files in our program to make

use of the library functions defined in such header files. For example, To use the library
functions such as printf/scanf we need to include stdio.h in our program which is a header file
that contains all the library functions regarding standard input/output.

Recursion in C

Recursion is the process which comes into existence when a function calls a copy of itself to
work on a smaller problem. Any function which calls itself is called a recursive function, and
such function calls are called recursive calls. Recursion involves several numbers of recursive
calls.

Recursion cannot be applied to all the problems, but it is more useful for the tasks that can be
defined in terms of similar subtasks. For Example, recursion may be applied to sorting,
searching, and traversal problems.

Generally, iterative solutions are more efficient than recursion since function calls are always
overhead. Any problem that can be solved recursively, can also be solved iteratively. However,
some problems are best suited to be solved by the recursion, for example, tower of Hanoi,
Fibonacci series, factorial finding, etc.

1.​ #include <stdio.h>

2.​ int fact (int);

3.​ int main()

4.​ {

5.​ int n,f;

6.​ printf("Enter the number whose factorial you want to calculate?");

7.​ scanf("%d",&n);

8.​ f = fact(n);

9.​ printf("factorial = %d",f);

10.​}

11.​int fact(int n)

12.​{

13.​ if (n==0)

14.​ {

15.​ return 0;

16.​ }

17.​ else if (n == 1)

18.​ {

19.​ return 1;

20.​ }

21.​ else

22.​ {

23.​ return n*fact(n-1);

24.​ }

25.​}

UNIT - IV

C++ Classes and Objects

Class: A class in C++ is the building block, that leads to Object-Oriented programming. It is a
user-defined data type, which holds its own data members and member functions, which can be
accessed and used by creating an instance of that class. A C++ class is like a blueprint for an
object.

An Object is an instance of a Class. When a class is defined, no memory is allocated but when it
is instantiated (i.e. an object is created) memory is allocated.
Defining Class and Declaring Objects

A class is defined in C++ using keyword class followed by the name of class. The body of class
is defined inside the curly brackets and terminated by a semicolon at the end.

Declaring Objects: When a class is defined, only the specification for the object is defined; no
memory or storage is allocated. To use the data and access functions defined in the class, you
need to create objects.

Syntax:

ClassName ObjectName;

Accessing data members and member functions: The data members and member functions of
class can be accessed using the dot(‘.’) operator with the object. For example if the name of
object is obj and you want to access the member function with the name printName() then you
will have to write obj.printName() .

Accessing Data Members

The public data members are also accessed in the same way given however the private data
members are not allowed to be accessed directly by the object. Accessing a data member
depends solely on the access control of that data member.

This access control is given by Access modifiers in C++. There are three access modifiers :
public, private and protected.

Member Functions in Classes

There are 2 ways to define a member function:

●​ Inside class definition
●​ Outside class definition

To define a member function outside the class definition we have to use the scope resolution ::
operator along with class name and function name.

Array of Objects in C++

Array of other user-defined data types, an array of type class can also be created. The array of
type class contains the objects of the class as its individual elements. Thus, an array of a class
type is also known as an array of objects. An array of objects is declared in the same way as an
array of any built-in data type.

The syntax for declaring an array of objects is
 ​ class_name array_name [size] ;
Example:
#include<iostream>
using namespace std;
class books
{
char tit1e [30];
float price ;
public:

https://www.geeksforgeeks.org/access-modifiers-in-c/
http://ecomputernotes.com/java/data-type-variable-and-array/explain-data-types-in-java

void getdata ();
void putdata ();
} ;
void books :: getdata ()
{
cout<<"Title:”;
Cin>>title;
cout<<"Price:”;
cin>>price;

}
void books :: putdata ()
{
cout<<"Title:"<<title<< "\n";
cout<<"Price:"<<price<< "\n”;
const int size=3 ;
int main ()
{
books book[size] ;
for(int i=0;i<size;i++)
{
cout<<"Enter details o£ book "<<(i+1)<<"\n";
book[i].getdata();
}
for(int i=0;i<size;i++)
{
cout<<"\nBook "<<(i+l)<<"\n";
book[i].putdata() ;
}
return 0;
}
C++ Friend Function

Private members are accessed only within the class they are declared. Friend function is used to
access the private and protected members of different classes. It works as bridge between
classes.

●​ Friend function must be declared with friend keyword.
●​ Friend function must be declare in all the classes from which we need to access private or

protected members.
●​ Friend function will be defined outside the class without specifying the class name.
●​ Friend function will be invoked like normal function, without any object.

#include<iostream.h>
​ class RectangleTwo;

​ class RectangleOne
​ {
​ ​ int L,B;
​ ​ public:
​ ​ RectangleOne(int l,int b)
​ ​ {
​ ​ L = l;
​ ​ B = b;
​ ​ }
​ ​ friend void Sum(RectangleOne, RectangleTwo);
​ };
​ class RectangleTwo
​ {
​ ​ int L,B;
​ ​ public:
​ ​ RectangleTwo(int l,int b)
​ ​ {
​ ​ L = l;
​ ​ B = b;
​ ​ }
​ ​ friend void Sum(RectangleOne, RectangleTwo);
​ };
​ void Sum(RectangleOne R1,RectangleTwo R2)
​ {
​ ​ cout<<"\n\t\tLength\tBreadth";
​ ​ cout<<"\n Rectangle 1 : "<<R1.L<<"\t "<<R1.B;

​ ​ cout<<"\n Rectangle 2 : "<<R2.L<<"\t "<<R2.B;
​ ​ cout<<"\n -------------------------------";
​ ​ cout<<"\n\tSum : "<<R1.L+R2.L<<"\t "<<R1.B+R2.B;
​ ​ cout<<"\n -------------------------------";
​ }

​ void main()
​ {
​ ​ RectangleOne Rec1(5,3);
​ ​ RectangleTwo Rec2(2,6);
​ ​ Sum(Rec1,Rec2);
​ }
Friend Class

A class can also be a friend of another class. A friend class can access all the private and
protected members of other class.

To access the private and protected members of a class into friend class we must pass on object
of a class to the member functions of friend class.

#include<iostream.h>
​ class Rectangle
​ {
​ ​ int L,B;
​ ​ public:
​ ​ Rectangle()
​ ​ {
​ ​ ​ L=10;
​ ​ ​ B=20;
​ ​ }
​ ​ friend class Square; //Statement 1
​ };
​ class Square
​ {
​ ​ int S;
​ ​ public:

​ ​ Square()
​ ​ {
​ ​ ​ S=5;
​ ​ }
​ ​ void Display(Rectangle Rect)
​ ​ {
​ ​ ​ cout<<"\n\n\tLength : "<<Rect.L;
​ ​ ​ cout<<"\n\n\tBreadth : "<<Rect.B;
​ ​ ​ cout<<"\n\n\tSide : "<<S;
​ ​ }
​ };
​ void main()
​ {
​ ​ Rectangle R;
​ ​ Square S;
​ ​ S.Display(R); //Statement 2

​ }

Constructor

Constructor is a special function used to initialize class data members or we can say constructor
is used to initialize the object of class.

Characteristics constructor.

●​ Constructor name class name must be the same.
●​ Constructor doesn't return value.
●​ Constructor is invoked automatically, when the object of the class is created.

Types of Constructor

●​ Default Constructor
●​ Parameterized Constructor
●​ Copy Constructor

Default Constructor

Constructing without parameters is called the default constructor.

Example of C++ default constructor

​ #include<iostream.h>

​ #include<string.h>

​ class Student

​ {

​ ​ ​ ​ ​ int Roll;

​ ​ ​ ​ ​ char Name[25];

​ ​ ​ ​ ​ float Marks;

​ ​ ​ ​ ​ public:

​ ​ ​ ​ ​ Student() //Default Constructor

​ ​ ​ ​ ​ {

​ ​ ​ ​ ​ ​ Roll = 1;

​ ​ ​ ​ ​ ​ strcpy(Name,"Kumar");

​ ​ ​ ​ ​ ​ Marks = 78.42;

​ ​ ​ ​ ​ }

​ ​ ​ ​ ​ void Display()

​ ​ ​ ​ ​ {

​ ​ ​ ​ ​ ​ cout<<"\n\tRoll : "<<Roll;

​ ​ ​ ​ ​ ​ cout<<"\n\tName : "<<Name;

​ ​ ​ ​ ​ ​ cout<<"\n\tMarks : "<<Marks;

​ ​ ​ ​ ​ }

​ };

​ void main()

​ {

​ ​ ​ ​ ​ Student S; //Creating Object

​ ​ ​ ​ ​ S.Display(); //Displaying Student Details

​ }

Parameterized Constructor

Constructing with parameters is called a parameterized constructor.

Example of C++ parameterized constructor

​ #include<iostream.h>

​ #include<conio.h>

​ #include<string.h>

​ class Student

​ {

​ ​ int Roll;

​ ​ char Name[25];

​ ​ float Marks;

​ ​ public:

​ ​ Student(int r,char nm[],float m) //Parameterized Constructor

​ ​ {

​ ​ ​ Roll = r;

​ ​ ​ strcpy(Name,nm);

​ ​ ​ Marks = m;

​ ​ }

​ ​ void Display()

​ ​ {

​ ​ ​ cout<<"\n\tRoll : "<<Roll;

​ ​ ​ cout<<"\n\tName : "<<Name;

​ ​ ​ cout<<"\n\tMarks : "<<Marks;

​ ​ }

​ };

​ void main()

​ {

​ ​ Student S(2,"Sumit",89.63);

​ ​ //Creating Object and passing values to Constructor

​ ​ S.Display();

​ ​ //Displaying Student Details

​ }

Copy Constructor

Initialization of an object through another object is called copy constructor. In other words,
copying the values of one object into another object is called a copy constructor.

Example of C++ copy constructor

​ #include<iostream.h>

​ #include<conio.h>

​ #include<string.h>

​ class Student

​ {

​ ​ int Roll;

​ ​ char Name[25];

​ ​ float Marks;

​ ​ public:

​ ​ Student(int r,char nm[],float m) //Constructor 1 : Parameterized Constructor

​ ​ {

​ ​ ​ Roll = r;

​ ​ ​ strcpy(Name,nm);

​ ​ ​ Marks = m;

​ ​ }

​ ​ Student(Student &S) //Constructor 2 : Copy Constructor

​ ​ {

​ ​ ​ Roll = S.Roll;

​ ​ ​ strcpy(Name,S.Name);

​ ​ ​ Marks = S.Marks;

​ ​ }

​ ​ void Display()

​ ​ {

​ ​ ​ cout<<"\n\tRoll : "<<Roll;

​ ​ ​ cout<<"\n\tName : "<<Name;

​ ​ ​ cout<<"\n\tMarks : "<<Marks;

​ ​ }

​ };

​ void main()

​ {

​ ​ Student S1(2,"Sumit",89.63);

​ ​ Student S2(S1); //Statement 1

​ ​ cout<<"\n\tValues in object S1";

​ ​ S1.Display();

​ ​ cout<<"\n\tValues in object S2";

​ ​ S2.Display();

​ }

Destructor

Constructor allocates the memory for an object.

Destructor deallocate the memory occupied by an object. Like constructor, destructor name and
class name must be the same, preceded by a tilde(~) sign. Destructor take no argument and
have no return value.

Constructor is invoked automatically when the object is created.

Destructor is invoked when the object goes out of scope. In other words, Destructor is invoked,
when the compiler comes out from the function where an object is created.

Example of C++ destructor

​ #include<iostream.h>

​ #include<conio.h>

​ #include<string.h>

​ class Student

​ {

​ ​ int Roll;

​ ​ char Name[25];

​ ​ float Marks;

​ ​ public:

​ ​ Student() //Default Constructor

​ ​ {

​ ​ ​ Roll = 4;

​ ​ ​ strcpy(Name,"Sumit");

​ ​ ​ Marks = 84.56;

​ ​ }

​ ​ void Display()

​ ​ {

​ ​ ​ cout<<"\n\tRoll : "<<Roll;

​ ​ ​ cout<<"\n\tName : "<<Name;

​ ​ ​ cout<<"\n\tMarks : "<<Marks;

​ ​ }

​ ​ ~Student() //Destructor

​ ​ {

​ ​ ​ cout<<"\n\tEnd of program.";

​ ​ }

​ };

​ void main()

​ {

​ ​ Student S;

​ ​ S.Display();

​ }

Constructor Overloading

In C++, Constructor is automatically called when an object(an instance of the class) is
created. It is the special member function of the class.Which constructor has arguments is
called Parameterized Constructor.

●​ One Constructor overload another constructor is called Constructor Overloading

●​ It has the same name as the class.

●​ It must be a public member.

●​ No Return Values.

●​ Default constructors are called when constructors are not defined for the classes.

Syntax

class class_name

{

Access Specifier : Member_Variables Member_Functions

public: class_name()

{ // Constructor code

} class_name(variables)

 { // Constructor code

 } ... other Variables & Functions

 }

#include<iostream>

#include<conio.h>

class Example

 { // Variable Declaration

int a, b;

public: //Constructor without Argument

Example() { // Assign Values In Constructor

a = 50; b = 100;

cout << "\nIm Constructor";

} //Constructor with Argument

Example(int x, int y)

 { // Assign Values In Constructor

 a = x; b = y;

cout << "\nIm Constructor";

} void Display()

{ cout << "\nValues :" << a << "\t" << b; } };

int main()

{

 Example Object(10, 20);

Example Object2; // Constructor invoked.

Object.Display();

Object2.Display(); // Wait For Output Screen

getch();

 }

UNIT - V
Inheritance

In C++, inheritance is a process in which one object acquires all the properties and
behaviors of its parent object automatically.

In C++, the class which inherits the members of another class is called derived
class and the class whose members are inherited is called base class. The derived
class is the specialized class for the base class.

Advantage of C++ Inheritance

Code reusability: Now you can reuse the members of your parent class. So, there
is no need to define the member again. So less code is required in the class.

Types Of Inheritance

C++ supports five types of inheritance:

●​ Single inheritance
●​ Multiple inheritance
●​ Hierarchical inheritance
●​ Multilevel inheritance
●​ Hybrid inheritance

Derived Classes

A Derived class is defined as the class derived from the base class.

The Syntax of Derived class:

1.​class derived_class_name :: visibility-mode base_class_name
2.​ {
3.​ // body of the derived class.
4.​ }

Where,

derived_class_name: It is the name of the derived class.

visibility mode: The visibility mode specifies whether the features of the base
class are publicly inherited or privately inherited. It can be public or private.

base_class_name: It is the name of the base class.

C++ Single Inheritance

Single inheritance is defined as the inheritance in which a derived class is
inherited from the only one base class.

Where 'A' is the base class, and 'B' is the derived class.

Example

#include <iostream>
 class Account {
 public:
 float salary = 60000;
 };
 class Programmer: public Account {
 public:
 float bonus = 5000;

 };
int main(void) {
 Programmer p1;
 cout<<"Salary: "<<p1.salary<<endl;
 cout<<"Bonus: "<<p1.bonus<<endl;
 return 0;
}

C++ introduces a third visibility modifier, i.e., protected. The member which is
declared as protected will be accessible to all the member functions within the
class as well as the class immediately derived from it.

Visibility modes can be classified into three categories:

●​ Public: When the member is declared as public, it is accessible to all the
functions of the program.

●​ Private: When the member is declared as private, it is accessible within the
class only.

●​ Protected: When the member is declared as protected, it is accessible within
its own class as well as the class immediately derived from it.

Visibility of Inherited Members

Base class visibility Derived class visibility

Public Private Protected

Private Not Inherited Not Inherited Not Inherited

Protected Protected Private Protected

Public Public Private Protected

C++ Multilevel Inheritance

Multilevel inheritance is a process of deriving a class from another derived class.

Example

#include <iostream>
 class Animal {
 public:
 void eat() {
 cout<<"Eating..."<<endl;
 }
 };
 class Dog: public Animal
 {

 public:
 void bark(){
 cout<<"Barking..."<<endl;
 }
 };
 class BabyDog: public Dog
 {
 public:
 void weep() {
 cout<<"Weeping...";
 }
 };
int main(void) {
 BabyDog d1;
 d1.eat();
 d1.bark();
 d1.weep();
 return 0;
}

C++ Multiple Inheritance

Multiple inheritance is the process of deriving a new class that inherits the
attributes from two or more classes.

Syntax of the Derived class:

1.​class D : visibility B-1, visibility B-2, ?
2.​ {

3.​ // Body of the class;
4.​ }

Example

#include <iostream>
class A
{
 protected:
 int a;
 public:
 void get_a(int n)
 {
 a = n;
 }
};

class B
{
 protected:
 int b;
 public:
 void get_b(int n)
 {
 b = n;
 }
};
class C : public A,public B
{
 public:
 void display()
 {
 std::cout << "The value of a is : " <<a<< std::endl;
 std::cout << "The value of b is : " <<b<< std::endl;
 cout<<"Addition of a and b is : "<<a+b;

 }
};
int main()
{
 C c;
 c.get_a(10);
 c.get_b(20);
 c.display();

 return 0;
}

C++ Hybrid Inheritance

Hybrid inheritance is a combination of more than one type of inheritance.

Example:

#include <iostream>

class A

{

 protected:

 int a;

 public:

 void get_a()

 {

 std::cout << "Enter the value of 'a' : " << std::endl;

 cin>>a;

 }

};

class B : public A

{

 protected:

 int b;

 public:

 void get_b()

 {

 std::cout << "Enter the value of 'b' : " << std::endl;

 cin>>b;

 }

};

class C

{

 protected:

 int c;

 public:

 void get_c()

 {

 std::cout << "Enter the value of c is : " << std::endl;

 cin>>c;

 }

};

class D : public B, public C

{

 protected:

 int d;

 public:

 void mul()

 {

 get_a();

 get_b();

 get_c();

 std::cout << "Multiplication of a,b,c is : " <<a*b*c<< std::endl;

 }

};

int main()

{

 D d;

 d.mul();

 return 0;

}

C++ Hierarchical Inheritance

Hierarchical inheritance is defined as the process of deriving more than one class
from a base class.

Syntax of Hierarchical inheritance:

1.​class A
2.​ {
3.​ // body of the class A.
4.​ }
5.​class B : public A
6.​ {
7.​ // body of class B.
8.​ }
9.​class C : public A
10.​{
11.​ // body of class C.
12.​}
13.​ class D : public A
14.​{
15.​ // body of class D.
16.​}

Example:

#include <iostream>

class Shape // Declaration of base class.

{

 public:

 int a;

 int b;

 void get_data(int n,int m)

 {

 a= n;

 b = m;

 }

};

class Rectangle : public Shape // inheriting Shape class

{

 public:

 int rect_area()

 {

 int result = a*b;

 return result;

 }

};

class Triangle : public Shape // inheriting Shape class

{

 public:

 int triangle_area()

 {

 float result = 0.5*a*b;

 return result;

 }

};

int main()

{

 Rectangle r;

 Triangle t;

 int length,breadth,base,height;

 std::cout << "Enter the length and breadth of a rectangle: " << std::endl;

 cin>>length>>breadth;

 r.get_data(length,breadth);

 int m = r.rect_area();

 std::cout << "Area of the rectangle is : " <<m<< std::endl;

 std::cout << "Enter the base and height of the triangle: " << std::endl;

 cin>>base>>height;

 t.get_data(base,height);

 float n = t.triangle_area();

 std::cout <<"Area of the triangle is : " << n<<std::endl;

 return 0;

}

	UNIT - I
	C: It is a structured programming language that is machine-independent and extensively used to write various applications, Operating Systems like Windows, and many other complex programs like Oracle database, Git, Python interpreter, and more.
	History of C Language
	Features of C Language
	Structure of a C
	Documentation Section
	Link Section
	Definition Section
	Global Declaration Section
	Main Function Section
	
	Sub Program Section
	Arithmetic Operators
	Logical Operators
	Bitwise Operators
	Assignment Operators
	Conditional Operator
	Special Operators

	Data Types in C
	​​Basic Data Types

	CONTROL STRUCTURES IN C
	C if else Statement
	If Statement
	If-else Statement
	If else-if ladder Statement

	C Switch Statement
	Rules for switch statement in C language
	Flowchart of switch statement in C

	UNIT - II
	C Loops
	Advantage of loops in C
	Types of C Loops

	do while loop in C
	do while loop syntax
	Flowchart of do while loop

	while loop in C
	Syntax of while loop in C language
	Flowchart of while loop in C
	Example of the while loop in C language

	for loop in C
	Syntax of for loop in C
	Flowchart of for loop in C
	C for loop Examples

	C break statement
	Syntax:
	Flowchart of break in c
	Example

	C continue statement
	Syntax:

	C goto statement
	goto example
	Declaring an Array

	C Array declaration
	Declare an Array
	Initialization an Array

	Initialize an array in C programming
	Initialize an Array
	Types of Arrays
	Single Dimensional Array
	Example Code
	Example Code
	Multi Dimensional Array
	Example Code
	Example Code
	Example Code
	
	UNIT - III
	String in C
	C – String functions

	1. STRLEN(): In C programming, we use strlen() to find the length of the string. String handling function strlen() returns the number of characters in string.
	C Functions
	Advantage of functions in C
	Function Aspects
	Types of Functions
	Return Value
	Different aspects of function calling
	Example for Function without argument and return value
	Example for Function without argument and with return value
	Example for Function with argument and without return value
	Example for Function with argument and with return value

	C Library Functions

	Recursion in C
	Inheritance
	Advantage of C++ Inheritance
	Types Of Inheritance
	Derived Classes
	C++ Single Inheritance
	Visibility of Inherited Members
	C++ Multilevel Inheritance
	C++ Multiple Inheritance
	C++ Hybrid Inheritance
	C++ Hierarchical Inheritance

