
“Unified Plan” Transition Guide (JavaScript)

Author: Henrik Boström (hbos@)

Background 1
Controlling Which SDP Format Is Used 2

Specifying the sdpSemantics in Your Application 2
Controlling the Default with chrome://flags 2

Feature Detection 2

Differences Between Plan B and Unified Plan 2
How the SDP is Different 2
The RTCRtpTransceiver APIs and Changes in Behavior 4

Local and Remote Track IDs Do Not Match 5
Remote Tracks Are Never Truly “Removed” 5
MediaStreamTrack.onended No Longer Fires 5
Legacy APIs 5
Transceiver direction, currentDirection and Early Media 6
Offering to Receive Media 6

Background

The WebRTC specification has evolved over the years. Notable API changes in the past include
the shift to addTrack() and other “track-based” APIs from the legacy addStream() and other
“stream-based” APIs. The track-based APIs exposed senders and receivers, allowing replacing
which track to send without renegotiation and getting and setting encoding parameters, but
there is one more stage left in the evolution towards WebRTC 1.0.

The specification has settled on an SDP format called “Unified Plan” which is different than
the Chrome’s SDP format, “Plan B”. Switching SDP format will impact many applications in
possibly breaking ways, including what SDP format is generated/accepted and assumptions no
longer holding (e.g. local and remote track IDs no longer match in some cases). It also adds a
set of new APIs: transceivers. This guide outlines the differences between “Plan B” and “Unified
Plan” to help developers prepare for the switch. Firefox already supports Unified Plan, which is
the only SDP format they support. Other browsers will follow.

You should be cautious if your application does one of the following things:
● Has multiple audio tracks or multiple video tracks.
● Relies on assumptions about local and remote track IDs matching.
● Munges SDP, uses MCUs or SFUs or otherwise modifies SDP or uses SDP that is not

generated by Chrome.

https://blog.mozilla.org/webrtc/the-evolution-of-webrtc/


Controlling Which SDP Format Is Used

Specifying the sdpSemantics in Your Application

You can override the default behavior by explicitly specifying the sdpSemantics in the
RTCPeerConnection constructor, allowing your application to control the SDP format of the
client. This flag is Chrome-only; if the browser does not recognize the parameter it is simply
ignored.

// Use Unified Plan or Plan B regardless of what the default browser behavior is.

new RTCPeerConnection({sdpSemantics:'unified-plan'});

new RTCPeerConnection({sdpSemantics:'plan-b'});

Unless your application is prepared for both cases, it is recommended that you explicitly set the
sdpSemantics to avoid surprises when Chrome’s default behavior changes.

Controlling the Default with chrome://flags

As of Chrome M71, chrome://flags contain the experiment “WebRTC: Use Unified Plan SDP
Semantics by default”. If you enable this option, or pass the command line argument
--enable-features=RTCUnifiedPlanByDefault when launching Chrome, RTCPeerConnections
will be constructed to use Unified Plan unless otherwise specified. (Prior to M71 one could have
the same effect using --enable-blink-features=RTCUnifiedPlanByDefault.) This allows you to
experiment on local instances of Chrome running applications that don’t specify sdpSemantics.

Feature Detection

In M69 transceivers were added, but they are only supported when Unified Plan is used.
Checking whether addTransceiver() throws an exception on a default-constructed
RTCPeerConnection is one way to feature detect if Unified Plan is the default. In M70,
getConfiguration() was added allowing you to explicitly check the value of sdpSemantics, similar
to how this already showed up in chrome://webrtc-internals/. For more details on feature
detection see this code snippet.

More sophisticated feature detection involves parsing SDP and counting m= sections and tracks
within m= sections.

Differences Between Plan B and Unified Plan

How the SDP is Different

In Plan B, one m= section is used for audio and one m= section is used for video, with the
media stream identification attribute, or mid, set to “audio” or “video” respectively. If multiple
tracks of the same kind are in an offer, multiple a=ssrc lines are listed under the same m=
section.

In Unified Plan, one m= section means one sending and/or one receiving track. The mid is its
identifier. If multiple tracks are used, multiple m= sections are created.

https://codepen.io/anon/pen/ZqLwWV?editors=0010


This makes the two SDP formats incompatible when multiple tracks of the same media
type is used. For example, a Unified Plan client might reject a Plan B offer with the
exception: “Failed to set remote answer sdp: Media section has more than one track
specified with a=ssrc lines which is not supported with Unified Plan.” Or a Plan B client
might accept a Unified Plan offer, but only creating tracks and firing ontrack for the first
m= sections, see code snippet.

Here’s an example of SDP offers in Plan B and Unified Plan when sending two audio tracks.
The example has been reduced and ssrcs/ids modified for simplicity. For more details, see the
complete original SDP diff and code producing the SDP dumps.

Plan B offer

...

a=group:BUNDLE audio

a=msid-semantic: WMS stream-id-2 stream-id-1

m=audio 9 UDP/TLS/RTP/SAVPF 111 103 104 9 0 8 106 105 13 110 112 113 126

...

a=mid:audio

...

a=rtpmap:103 ISAC/16000

...

a=ssrc:10 cname:cname

a=ssrc:10 msid:stream-id-1 track-id-1

a=ssrc:10 mslabel:stream-id-1

a=ssrc:10 label:track-id-1

a=ssrc:11 cname:cname

a=ssrc:11 msid:stream-id-2 track-id-2

a=ssrc:11 mslabel:stream-id-2

a=ssrc:11 label:track-id-2

Unified Plan offer

...

a=group:BUNDLE 0 1

a=msid-semantic: WMS

m=audio 9 UDP/TLS/RTP/SAVPF 111 103 104 9 0 8 106 105 13 110 112 113 126

...

a=mid:0

...

a=sendrecv

a=msid:- <track-id-1>

...

a=rtpmap:103 ISAC/16000

...

a=ssrc:10 cname:cname

a=ssrc:10 msid: track-id-1

a=ssrc:10 mslabel:

a=ssrc:10 label:track-id-1

m=audio 9 UDP/TLS/RTP/SAVPF 111 103 104 9 0 8 106 105 13 110 112 113 126

...

https://codepen.io/anon/pen/BqJjoZ?editors=0010
https://www.diffchecker.com/qR5d7M7A
https://codepen.io/anon/pen/MPJqNq?editors=0010


a=mid:1

...

a=sendrecv

a=msid:- track-id-2

...

a=rtpmap:103 ISAC/16000

...

a=ssrc:11 cname:cname

a=ssrc:11 msid: track-id-2

a=ssrc:11 mslabel:

a=ssrc:11 label:track-id-2

Things to note:
● In Plan B, “a=mid:audio” was used and both tracks were specified under the same

“m=audio” section.
● In Unified Plan, “a=mid:0” was used for the first track and “a=mid:1” was used for the

second track. A lot of “a=rtpmap” lines are listed twice, once for each m= section.
● In this example, because addTrack() was called without a stream argument, Unified Plan

does not contain a stream ID; the “a=msid” lists the stream ID as “-”. In Plan B however,
a randomized stream ID was generated for each track. If a stream is used, both formats
list that stream ID.

● In Chrome’s Unified Plan, the “a=ssrc” lines with “msid”, “mslabel” and “label” (marked
gray above) are there for backwards compatibility and are not required in Unified Plan
SDP format.

Sending one audio track and one video track is compatible between clients on different SDP
formats though, see code and diff.

The RTCRtpTransceiver APIs and Changes in Behavior

A transceiver represents an m= section in SDP. Because an m= section can be used for both
sending and receiving, a transceiver always consists of both a sender and a receiver. The
direction can change between “inactive”, “sendonly”, “recvonly” and “sendrecv”. A track can be
attached to the sender, it may be replaced (with replaceTrack()) or the sender can have no track
attached.

When a track is added to a peer connection with addTrack() or addTransceiver(), a transceiver
is created (or reused) and the track is attached to the sender. Because a transceiver may be
used for receiving, a receiving track is always created and attached to the receiver. Unlike the
sender, the receiver’s track is always there and cannot be replaced, but it is muted by default.

setLocalDescription() and setRemoteDescription() permanently ties transceivers to m= sections
by setting the value of transceiver.mid to the m=section’s mid. This is a string identifier that can
be used by both endpoints to correlate transceivers and thus which track is which. Applying
remote SDP may cause transceivers to be created or updated and RTCPeerConnection.ontrack
to fire for each remote track that should now receive. The track in question is a receiver’s track,

https://codepen.io/anon/pen/NOdLvb?editors=0010
https://www.diffchecker.com/8Dmr2vmP
https://w3c.github.io/webrtc-pc/#rtcrtptransceiver-interface


which may or may not have been created at an earlier stage due to reusing transceivers, such
as one created at addTrack(). The track will unmute; if a subsequent setRemoteDescription()
changes the transceiver’s direction not to receive anymore, the track is muted again.

Local and Remote Track IDs Do Not Match

In Plan B, a sender is created for each local track that is added and a receiver is created for
each remote track that is negotiated, the track IDs of local and remote endpoints match.

In Unified Plan, senders and receivers are created in pairs of transceivers, and a
transceiver.receiver.track may have been created long before remote SDP offers a track. As
such, the track that is fired in RTCPeerConnection.ontrack is no longer guaranteed to have an
ID matching the sender-side version of the track. Furthermore, because of addTransceiver() and
replaceTrack(), a track may be sent multiple times. Track IDs are misleading, and shouldn’t be
assumed to match. Instead, transceiver.mid should be used to correlate local and remote tracks.
You may have to “setLocalDescription(answer)” before the mid is known.

Remote Tracks Are Never Truly “Removed”

In Plan B, RTCPeerConnection.removeTrack() removes the sender and track, and during
negotiation the other endpoint removes the corresponding receiver and track.

In Unified Plan, removeTrack() changes the direction of the transceiver and nulls the sender’s
track. During negotiation, the other endpoint changes the corresponding transceiver’s direction
and mutes the track but it is never removed, and it may be reused in the future. See code
snippet.

MediaStreamTrack.onended No Longer Fires

Because remote tracks may be muted but are never removed, MediaStreamTrack.onended no
longer fires. Instead, rely on MediaStreamTrack.onmute to discover if a track is removed. See
code snippet.

Legacy APIs

RTCPeerConnection.addStream() and removeStream() are non-standard APIs. These are
shimmed on top of RTCPeerConnection.addTrack() and removeTrack() for backwards
compatibility reasons. They will continue to work in Unified Plan, but standardized APIs should
be preferred.

Likewise, the events “addstream” and “removestream” fired on an RTCPeerConnection (with
event handlers “onaddstream” and “onremovestream”) are legacy APIs that are not in the
standard. For backwards compatibility reasons they are supported in Unified Plan as of M71,
but RTCPeerConnection.ontrack, MediaStreamTrack.onmute and
MediaStream.onaddtrack/onremovetrack should be preferred.

https://codepen.io/anon/pen/Xxpyzp?editors=0010
https://codepen.io/anon/pen/Xxpyzp?editors=0010
https://codepen.io/anon/pen/EdbWgY?editors=0010


Transceiver direction, currentDirection and Early Media

Transceivers are bi-directional. When created, transceivers will by default have a “sendrecv”
direction and a null currentDirection. The direction is what we are willing to negotiate, and
currentDirection is what has currently been negotiated. If the answerer wants to send media and
there is a “sendrecv” transceiver in the offer, the answer can use that transceiver to send media.
This allows the answerer to start sending RTP packets immediately, giving the offerer access to
media “early”. In Plan B, the offerer doesn’t have a receiver until the answer arrives.

This code snippet illustrates the states transceivers may go through during offers and answers.

Offering to Receive Media

The answerer is not allowed to add new m= sections in the answer SDP. This means that if the
offerer is not offering to send anything, there’s typically no “sendrecv” m= sections that the
answerer can use to send media on. Renegotiation is needed on the answerer’s side, adding
more round trip times before sending is possible. This section describes how to offer to receive
media, making it possible to receive Early Media in the initial offer/answer cycle.

In Plan B, the legacy createOffer()-constraints offerToReceiveAudio/offerToReceiveVideo would
create m= sections for it to be possible to receive any number of tracks. In Unified Plan this
constraint only works for a single track per kind as it only creates one audio and/or video
transceiver; the spec advises using addTransceiver() instead.

The Unified Plan way of offering to receive media is to use addTransceiver() to create as many
“recvonly”-transceiver as you are willing to receive. This code snippet illustrates how.

Update 2021-01-20: Difference in iceConnectionState due to lack of

“end-of-candidates” support

In Plan B, when unable to connect or connection is lost, iceConnectionState may either report
“disconnected” or “failed”. But in Unified Plan, we generally report “disconnected” instead of
“failed”. This is something your application has to be prepared for, and it may be worth treating
being “disconnected” or having been “disconnected” for a few seconds as an indication that we
have “failed”.

Why is iceConnectionState different?

The RTCPeerConnection.iceConnectionState should be calculated according to this table. It is a
compound state taken from the RTCIceTransportStates. When an ICE transport is unable to
connect or loses a connection the spec says to report either “disconnected” or “failed”
depending on whether or not there are more ICE candidates to try. In order for the
implementation to know whether to report “disconnected” for “failed” it thus has to know whether
or not we have reached “end-of-candidates”. Unfortunately, at the time of writing, this has not
been implemented - see https://crbug.com/935898.

https://codepen.io/anon/pen/gBgJOL?editors=0010
https://w3c.github.io/webrtc-pc/#legacy-configuration-extensions
https://codepen.io/anon/pen/dgJGqO?editors=0010
https://w3c.github.io/webrtc-pc/#rtciceconnectionstate-enum
https://w3c.github.io/webrtc-pc/#dom-rtcicetransportstate
https://crbug.com/935898


Plan B handles the lack of “end-of-candidates” support with a heuristic and reports “failed” with
a timeout or other internal logic. This means that it might report “failed” even when it shouldn’t,
but most of the time this is still very useful.

This changed in Unified Plan with the exposure of RTCIceTransport states. To avoid internal
contradictions, iceConnectionState in Unified Plan is compounded according to spec. But
because RTCIceTransports handle the lack of “end-of-candidates” by reporting “disconnected”
even when it should report “failed”, so too does iceConnectionState report “disconnected” when
it should report “failed”.


