
 

No Credentials left behind 
-​ Jigar Patel 
-​ 04/06/2023 

Executive Summary 
 
The malware is a packed password stealer designed to steal credentials from browsers, FTP Clients, Mail 
Clients, windows login, and digital wallets and send it to its C&C. The malware contains a lot of 
obfuscated code which it unpacks during execution and also makes sure to delete itself and a Windows 
Batch file (which it executes and is doing the cleanup) it drops after execution. 
 
The malware contacts its C&C using HTTP POST requests on port 10015 with seemingly legit-looking 
HTTP headers to camouflage it from IDSs and also encrypts/encodes its payload. The malware is hard 
coded with many IPs (85.192.165.229, 176.96.187.114, 176.96.187.116, and more) to make sure that it is 
able to successfully exfiltrate information in case any of the servers are taken down by authorities. 
 
The malware steals sensitive data from more than 2 dozen software and leaves minimal trace other than 
the Windows logs. It also creates a hidden GUI whose purpose might be anti-debugging and might even 
be helping it unpack itself using subwindows.  
 
The malware creates a registry HKU\%(SID)\Software\WinRaR\HwID and writes hex data into it. It 
might be for persistence, however, It is not readily apparent if the malware even persists.  

 

 



 

Static Analysis 
 

0x00 - PEStudio & Virustotal 
PE studio gives us these host-based indicators for the flagged malware. 

-​ md5 - C71F5EE952162F4E509063C3B7E9C5IC 
-​ sha1 - 6ADB8E0A00C7A7950E0C4C2500391604274A6E78 
-​ sha256 - 

7D756E2F89B385032206FFAC5548025B8E58C558CD32EBA1CEBAB530C374BB88 

 
Fig 1. PE Studio Summary 

 
The malware is a PE 32-bit executable with a file size of 118784 bytes. The entropy is 6.337, indicating 
that it might not be packed, but it still is high and could be the consequence of some obfuscation. The 

 



 

executable runs with a GUI (probably hidden) and the compile stamp is Monday, March 23, 2015, 
7:18:36 PM GMT (Figure shows GMT - 4). One can surely edit it nonetheless and compute a checksum. 
 

 
Fig 2. Virustotal Summary 

 
VirusTotal [1] flagged the sha256 hash 39/68 times 2 days ago.  
 
The tag direct-cpu-clock-access suggests some anti-debugging techniques. The tags spreader is apparent. 
 

 
Fig 3. Virustotal Labels from AVs 

 
The popular label is trojan.tepfer/deepscan. The keyword Generica.DataStealer is present for BitDefender, 
Arcabit, etc. hints towards the malware’s purpose. Windows Defender tags the malware as  
PWS:Win32/Fareit. PWS is an abbreviation for password stealer, again indicating the malware’s purpose. 
 
 
 
 
 

 

https://www.virustotal.com/gui/file/7d756e2f89b385032206ffac5548025b8e58c558cd32eba1cebab530c374bb88/detection


 

0x01 - PEStudio- Sections 
 

 
Fig 4. PEStudio File Sections 

Virustotal reports 4 sections.  
 

1.​ .txt  
a.​ The Entropy of 6.644 does not suggest a packed section but it is still in the higher region. 
b.​ The raw and virtual sizes are almost similar and also the section is marked 

readable-executable only indicating that no unpacked code will be placed in this section at 
runtime. 

2.​ .rdata 
a.​ This section typically contains read-only data such as the import address table, constant 

strings, etc. 
b.​ The raw and virtual sizes are similar and the size is typical of a .rdata section. Also, it's 

marked read-only too indicating that no code in this section can be directly executed 
without copying it somewhere else. 

3.​ .data 
a.​ The raw size is smaller than the virtual size, which is expected of the data section. The low 

entropy of 1.691 suggests that most of the data is uninitialized or human-readable text. 
b.​ The section is marked readable-writable only, indicating that no unpacked code in this 

section can be directly executed. 
4.​ .rsrc 

a.​ The raw and virtual sizes are almost similar. The approx 200-byte reduction in virtual size 
could be attributed to block alignment in the disk. 

b.​ An entropy of 3.959 tells us that it is mostly text, but might also contain encoded resources 
such as bitmap images, icons, etc. 

 



 

c.​ This section is marked read-only too indicating that no code in this section can be directly 
executed without copying it somewhere else. 

0x03 - PEStudio - Rich File Headers & Version 

 
Fig 5. PEStudio Rich File Headers 

 
The rich headers in Fig 5. identify many telltales that the compiler is Visual Studio 2005. However, we 
previously noted that the compiler timestamp was in 2015. Which makes the build tool release and the 
build date difference of almost a decade. 
 
More interesting is that the checksum present is incorrect, indicating the possibility that the headers were 
faked. 
 

 
Fig 6. PEStudio Version 

 

 



 

PEStudio also identifies version metadata from the malware. The supposed original filename is 
ManyBytes.exe with its current version being 1.0.0.4. The copyright is from 2001-2014. It ends before the 
compilation date of the program and starts pretty early than the compilation date. 
 
It might be a side-effect of the malware developers copying the rich file headers and version info from 
an old program to camouflage the malware as a more legitimate program. 

0x04 - PEStudio Libraries & Blacklisted Imports 
 

 
Fig 7. PE Studio Libraries 

We see only libraries being used user32.dll, kernel32.dll, and shell32.dll. However, we will see malware 
import many other libraries and functions during run-time.  
 

 
Fig 8. PE Studio Blacklisted Imports 

 
The following observations can be made by the blacklisted imports: 

1.​ GetDesktopWindow gets the handle to the desktop window. It can be used to take a screenshot of 
the desktop according to a UMD professor [2]. 

2.​ GetKeyState retrieves the state of a particular key. GetClipboardData reads data in the clipboard. 
Both can be used for keylogging. 

3.​ DeleteFileW suggests that the malware may delete any user files, dropped files, or even itself. 
4.​ GetEnvironmentVariableA, GetEnvironmentStrings, and GetEnvironmentStringsW all point 

to the malware reading its execution environment and probably some command line arguments to 
make smart decisions. 

 

https://redirect.cs.umbc.edu/courses/undergraduate/CMSC491malware/Malware%20and%20the%20Windows%20API.pptx


 

5.​ The functions GetCurrentThreadId, TerminateProcess, and GetModuleFileNameA can be 
employed by the malware for manipulating itself or other processes. 

0x05 - PEStudio Imports 

 
Fig 9. PE Studio Imports 

 
We see four types of imports in Figure 9. 

●​  Windowing 
○​ Functions like CreateWindowExW, SendMessageW, SetWindowPos, MoveWindow, 

ShowWindow, and RegisterClassW allow a malware writer to register and create 
custom windows whose attributes such as whether the window is shown, where is it 
located, what size it is can be defined, what input it captures, which procedure to call to 
handle events, etc. 

●​ Synchronization 
○​ EnterCriticalSection, InitializeCriticalSection, LeaveCriticalSection, 

InterlockedIncrement, and InterlockedDecrement allow the safe sharing of resources 
between threads. These resources can be file handles, sockets, and so on. Multiple threads 
allow the malware to perform various tasks parallelly such as setting up persistence, 
reading, encrypting or deleting data, getting post-exploit code, talking to its C&C, etc. 

●​ Resource & Memory 
○​ LoadIconW, LoadStringW, and ExtractIconW allow retrieval of handles to resources 

embedded in the executable. These resources can then be displayed on a GUI component or 
can be used to covertly load shellcode as shown by this blog post by Morph3. 

 

https://morph3.blog/posts/Exotic-ways-of-hiding-shellcode-Part-1-Icons/#:~:text=had%20to%20pay%E2%80%9D-,Part%201%3A%20Icons,-Our%20main%20goal


 

●​ GetVersionExA 
○​ This function retrieves an OSVERSIONINFOA struct that contains data to identify the 

exact type and version of the victim operating system. 

 
Fig 10. PE Studio Imports 2 

 
 

The following observations can be made from Figure 10: 
●​ GUI 

○​ Common GUI operations such as EnableWindow, GetActiveWindow, GetFocus, 
BeginPaint, EndPaint, InvalidateRect, and FlashWindowEx can be seen.  

○​ GetDlgItemInt suggests the use of dialog boxes. 
●​ DLL Imports 

○​ Calls to LoadLibraryA, GetModuleHandleA, and GetProcAddress make it apparent that 
the malware will be loading dynamic libraries and might even use function ordinals to call 
functions that are not seen in the import table. 

 

https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-osversioninfoa


 

●​ File Operations 
○​ The malware exposes its capability to read and write to a file through ReadFile & 

WriteFile calls. We also see imports to GetFileType and GetFileSize. 
●​ Execution 

○​ GetCommandLineA and GetCommandLineW retrieve the command line string for the 
running process. Access to the command line strings allows the malware to make an 
informed decision from its command line arguments and also find its own path and name. 

0x06 - PEStudio Strings 

 
Fig 11. PE Studio Strings 1 

 
PEStudio blacklists strings are shown in Figure 11. Two strings riched32.dll and guikas.txt have not been 
seen before. 

1.​ Riched32.dll is a module containing functions for the Rich Text Edit control. 
2.​ Guikas.txt may be a file dropped by the malware or might even be used to avoid multiple 

executions. 

 
Fig 12. PE Studio Strings 2 

 
In Figure 12, we note the following: 

1.​ Kolin, zolupalim, and screenssanges are probably strings hardcoded by the malware author. They 
can be mutex, file names, window names (Wink Wink), etc. 

2.​ We see Close, button, edit, and richedit, which indicate what GUI components the malware 
might create/use. 

 



 

0x06 - Look at the Entry using Ghidra 
The entry function for the malware calls subfunctions that read environment variables, read the execution 
command line and also call a function appropriately dubbed windowMaker in Figure 13. 
 

 
Fig 13. Ghidra entry subfunction dubbed windowMaker 

 
This function calls an initWindow function (shown in Figure) that registers a window class called 
zolupalim. We also get to know that the handler for the windows is located at Window_Entry whose 
value is 0x0040dae0. 
 

 



 

 
Fig 14. Ghidra subfunction dubbed initWindow 

 
After the call to initWindow, the next call to createWindowWrapper (shown in Figure 15) creates a 
window with window name screenssages of the above-registered class name zolupalim. The X and Y 
coordinates are -0x80000000, and the width and height are 0xf. More notable is the call to showWindow 
with the first param being window handle and the second param 0, which from Microsoft documentation 
is SW_HIDE (it hides the window and activates another window). Thus, the malware does create a 
hidden window. 
 

 



 

 
Fig 15. Ghidra subfunction dubbed createWindowWrapper 

 



 

 

 
Fig 16. Zoluplam Window Class Entry 

 
 
Further looking into the window handler (in Figure 16), we see that for the message identifier 0x1 
(Window Create), the window initializes 5 other windows. Two of them are buttons with the text Ok and 
Close, while three other windows have classes edit, static, and richedit. 
 
Malware might create hidden windows for multiple reasons. It can be to log debug messages during 
development, set up a key logger, or even set up keyboard event callbacks to hinder debugging.  

 



 

Dynamic Analysis 

0x00 - Initial Run 
Running the malware, we do not see any GUI pop-up. However, we notice that the malware deletes 
itself after executing for about a minute. 
 
Next, we run the malware with Procmon & Regshot. 

0x01 - Run with Monitoring Tools - File Activities 
 
In Procmon, we filter for CreateFile performed by the malware to look at the created file handles. 
 

 
Fig 17. Procmon - CreateFile DLLs 1 

 



 

 
Fig 18. Procmon - CreateFile DLLs 2 

 
From Figures 17 and 18, we observe the following: 

●​ We see the malware load the following Dlls 
○​ imm32.dll, uxtheme.dll, dwmapi.dll, comctl.dll, riched32.dll, sechost.dll, rpcss.dll, 

cryptbase.dll, version.dll, wsock32.dll, rpcss.dll, netapi32.dll, netutils.dll, srvcli.dll, 
wkscli.dll, samcli.dll, msi.dll, pstorec.dll, atl.dll, sspicl.dll 

●​ Netapi32.dll and wsock32.dll scream at the possibility of network operations. 
●​ There should be some sort of obfuscation in the code to hide these DLL names. 
●​ Guikas.txt’s handle has been created. 

 

 



 

 
Fig 19. Procmon - Probing files 

 
The malware then shows more interesting behavior. It starts probing for file paths that are not present. 
Since these paths are not present, it can be confirmed that the malware is not enumerating the directory but 
rather looking for these specific files. 
 
Figure 19 shows the malware trying to open handles to the .dat files for CuteFTP, CuteFTP Pro, and 
CuteFTP Lite. Searching for use of sm.dat use in CuteFTP, we land on this site that gives out a password 
decrypter for CuteFTP. Here, we learn that sm.dat is used to store FTP passwords. Cumulated with the 
knowledge that Microsoft Defender calls this malware PWS (Password Stealer), it can be safely assumed 
that these files are read by the malware to steal any credentials it is able to. 
 

 
Fig 20. Procmon - Probing Registries 1 

 
We see the malware also reading the registry keys too associated with credential-saving software installed 
on the victim machine. Figure 20 and 21 shows the malware reading from registry keys such as 
HLKM\Software\FlashFXP\4, HKLM\Software\Ghisler\Windows Commander, and 
HKLM\Software\Ghisler\Total Commander and then going on to read data files or ini files associated 

 

https://www.windows7download.com/win7-password-decryptor-for-cuteftp/rakyisva.html#:~:text=auto%20discoverying%20the%20CuteFTP%20password%20file%20(sm.dat)%20from%20the%20current%20profile%20location


 

with FlashFXP (a GUI-based FTP client for Windows) and Total Commander (orthodox shareware now 
known as Windows Commander). 

 
Fig 22. Procmon - Probing Registries 2 

 
 
 
The malware of course does not stop at FTP Clients but also looks for saved browser credentials, ssh 
sessions, mail client logins, windows credentials, and surprisingly digital wallets. A comprehensive list 
will be available during Advanced Static Analysis. 
 

 
Fig 23. Procmon - WriteFile 9458515.bat 

 
Filtering for WriteFile operations, In Figure 23, we see the malware write 94 bytes into a file at 
C:\Users\malware\AppData\Local\Temp\9458515.bat (Note: name changes on different executions). 
This file is opened is closed multiple times and the authors make sure to delete the file when the malware 
exits since we didn’t find it. Not surprisingly the .bat is run and it deletes both malware and itself using 
the operation SetDispositionInformationFile. 
 
 
 

 



 

0x02 - Run with Monitoring Tools - Process Activities 

 
Fig 24. Procmon - Threads 

Filtering for ThreadCreate we see the malware creating multiple threads. Probably for GUI, enumeration, 
and network operations. 
 
While filtering for Process activities, we also see the malware creating a process through cmd.exe. 
 

 
Fig 25. Procmon - Process Create 

 
 

 
Fig 26. Procmon - Created Process Command Line 

 
Looking at the command line that triggered the process, we see the malware runs the dropped .bat file 
using the command  
C:\Windows\system32\cmd.exe /c “C:\Users\malware\AppData\Local\Temp\721879.bat”. 
 
 (Note: The batch file name is different on different executions thus we see 721879.bat and not above 
mentioned 9458515.bat) 
 
Further discussion on the batch file is in Section 0x05 of Dynamic Analysis. 

 



 

0x03 - Run with Monitoring Tools - Network Activities 
 

 
Fig 27. Procmon - Network Activity 

 
Filtering for network events, we see the malware trying to connect to 85.192.165.229 on port 10015. 
Since networking was disabled, we see the malware attempting some retries and then moving on to 
another IP address 176.98.187.114 on the same port 10015. 
 

 
Fig 28. WHOIS 85.192.165.229 

 

 



 

 
Fig 29. WHOIS 176.98.187.114 

Doing a whois on these IPs, we see both IPs belonging to Organization VolgaTelecom and IPSvyaz in 
Russia. Indicating an originating point for the malware, however, cannot be confirmed by just these IPs. 
 
If we allow the malware to continue running, we see it contacts other IP addresses. 
 
The malware does not contact any domains and also none of these IPs are present as readable strings in 
the malware, confirming the presence of at least a little code obfuscation. 
 
Running the malware now with networking enabled and also running accept-all-ips start and nc -lvnp 
10015 on the default gateway Remnux machine, we see the following HTTP POST request being made 
by the malware. 
 

 



 

 
Fig 30. HTTP POST to 85.192.165.229:10015/gate.php 

 
We see that 182 bytes of octet-stream data have been posted to 85.192.165.229:10015/gate.php. The data 
predominantly looks encrypted or encoded. The User-Agent strings show an older version of both Mozilla 
and MS IE. Might be that the User-Agent was appended by a library call or hard-coded by the developer 
to make the request look more legitimate. 
 

0x04 - Run with Monitoring Tools - Registry Activities 

 
Fig 31. Regshot Suspicious Registry Keys added 

In Figure 31 we see the malware add a suspicious key 
HKU\S-1-5-21-4118134989-263107447-873320884-1000\Software\WinRaR\HwID with Regshot. The 
value seems a stream of hex values. 
 
 
 
 
 
 

 



 

0x05 - Checking out the Dropped Batch File 
The dropped .bat file is executed by the malware. Filtering for the Process ID in Procmon for the created 
process, we see the following suspicious activities. 
 

 
Fig 32. Procmon - .bat file execution 1 

 
The dropped .bat file on execution deletes the malware (sample3.exe) by calling 
SetDispositionInformatioFile on the file. It also makes sure to delete itself too as shown in Figure 33 
using the same function call. 
 

 
Fig 33. Procmon - .bat file execution 2 

 

 

 



 

Advanced Static Analysis 
Not finding interesting code such as the network operations, registry operations, etc. directly using Ghidra, 
I dumped the process using FTKImager and Volatility’s PsScan plugin. Now opening the dump in ghidra, 
we see many things have changed. 
 

 
Fig 34. Ghidra File Sections 

 
Figure 34 shows the file sections in the dumped binary. We see file section UPX0, UPX1, and UPX2 have 
appeared. 

 



 

 
Fig 35. Ghidra Strings 1 

Looking at the strings, we see a lot more interesting strings have appeared. 
 
The following observations can be made from Figure 35: 

1.​ We see strings such as Software\\GlobalSCAPE\\CuteFTP 6 Home\QCToolbar, \\filezilla.xml, 
Software\FileZilla, \\FlashFXP, containing registry entries and file locations for the software that 
we identified are being read from. 

2.​ We see mention of CredFree, CryptGetUserKey, CryptUnprotectData, CryptExportKey, 
CrypReleaseContext which indicates the malware also steals windows credentials too. 

 



 

3.​ Mentions of CreateProcessAsUserA, AdjustTokenPriviledge, LookupPriviledgeValue, 
LogonUserA, SeImpersonatePriviledge (In Fig 36), SeCreateTokenPriviledge ((In Fig 36) 
might mean that the malware is attempting to create process or files with higher priviledges. 
However, during dynamic analysis using Procmon, we only saw the malware launch the dropped 
.bat file whose initial purpose seems to perform cleanup. That operation might not need elevated 
privilege and thus the purpose of function like AdjustTokenPriviledge does not become readily 
clear. 

4.​ We also see strings such as History, Cache, and Cookies indicating that web browsers are also in 
the scope. 

 

 
Fig 36. Ghidra Strings 2 

 
Figure 36 identifies the public IPs used as a C&C servers and the raw HTTP request along with its 
headers. We also see mentions of other FTP clients, explorer.exe, registry entries in Explorer, format 
strings. 
 
Note: The IPs are properly listed in the IOC section. 
 

 



 

 
Fig 37. Ghidra Strings 3 

 
Following observations can be mde from Figure 37: 

1.​ Keywords such as Outlook, SMTP Email Address, POP3 Server, and Thunderbird suggest that 
the malware is searching for credentials in email clients as well. 

2.​ More surprisingly we see strings such as Bitcoin, Electrum, and Wallet.dat that the malware is 
targeting digital wallets too. 

 
 

 

 

 



 

Indicators of Compromise 
●​ Presence of sha1 - 6ADB8E0A00C7A7950E0C4C2500391604274A6E78. 
●​ Presence of md5 - C71F5EE952162F4E509063C3B7E9C5IC. 
●​ Presence of sha256 - 

7D756E2F89B385032206FFAC5548025B8E58C558CD32EBA1CEBAB530C374BB88 
●​ HTTP POST calls to the following IPs using port 10015 

○​ 85.192.165.229 
○​ 176.96.187.114 
○​ 176.96.187.116 
○​ 80.254.98.212 
○​ 5.114.66.227 

●​ Registry value HKU\%(SID)\Software\WinRaR\HwID being set. (WinRAR doesn’t seem to set 
this key on the 2 systems I looked at. Might lead to false positives, so better used in conjunction 
with other indicators) 

YARA Rule 
 

 
Fig 38 Yara rule to match our sample3.exe 

 
 

 
Fig 39 Yara matches on sample3.exe 

 


	No Credentials left behind 
	-​Jigar Patel 
	-​04/06/2023 

	Executive Summary 
	 
	Static Analysis 
	0x00 - PEStudio & Virustotal 

	 
	0x01 - PEStudio- Sections 
	0x03 - PEStudio - Rich File Headers & Version 
	0x04 - PEStudio Libraries & Blacklisted Imports 
	0x05 - PEStudio Imports 
	0x06 - PEStudio Strings 
	 
	0x06 - Look at the Entry using Ghidra 

	Dynamic Analysis 
	0x00 - Initial Run 
	0x01 - Run with Monitoring Tools - File Activities 
	0x02 - Run with Monitoring Tools - Process Activities 
	0x03 - Run with Monitoring Tools - Network Activities 
	0x04 - Run with Monitoring Tools - Registry Activities 
	0x05 - Checking out the Dropped Batch File 

	 
	Advanced Static Analysis 
	 
	 
	Indicators of Compromise 
	YARA Rule 

