
PhysioNet/CinC Challenge 2019 - Cloud Submission
Instructions​
Table of Contents

Preparation and submission instructions

MATLAB-specific instructions

Python-specific instructions

R-specific instructions

Julia-specific instructions

Docker-specific FAQs

FAQ

​
Preparation and submission instructions

1.​ Create a GitHub repository for your code. Add physionetbuddy as a collaborator if
your repository is private.

2.​ Add your prediction code to your repository. Your code must be in the root directory of
the master branch.

3.​ Do not add training data or anything else that is not needed to run your prediction code.
4.​ Follow the instructions for the language of your submission.
5.​ Use Google Forms to submit your entry:

a.​ Please submit your entry here.
b.​ Use the email address that you used to register for PhysioNet.
c.​ We will clone your GitHub repository

using the HTTPS URL that ends in
.git (see figure on right). You can get
this URL by clicking on “Clone or
download” on GitHub and copying and
pasting the URL. Please DO NOT
enter the URL at the top of your web
browser because it does not end in
.git. Please see here for more details.

6.​ We will put the scores for successful entries on the leaderboard. The leaderboard will
publicly show your team name, run time, and score.

MATLAB-specific instructions

1.​ Confirm that your MATLAB code compiles and runs in MATLAB 2019a.
2.​ Using our sample MATLAB prediction code (link) as a template, format your code in the

following way. Consider downloading this repository, replacing our code with your code,
and adding the updated files to your repository.

3.​ AUTHORS.txt, LICENSE.txt, README.md: Update as needed. Unfortunately, our
submission system will be unable to read your README.

https://forms.gle/QaYRpDJX6iyAbobZ8
https://forms.gle/ARfUYv5Vpsa24EaB7
https://help.github.com/en/articles/which-remote-url-should-i-use
https://github.com/physionetchallenges/matlab-example-2019

4.​ load_sepsis.model.m: Update this script to load your model weights and any
parameters from files in your submission. It takes no input (place any filenames, etc. in
the body of the function itself) and returns any output that you choose. You must
implement this function in the load_sepsis_model.m script.

5.​ get_sepis_score.m: Update this script to run your model. It takes a matrix of clinical
data (columns are clinical variables and rows are time windows) and the output from
load_sepsis_model as input and returns a single risk score and a single binary
prediction as output. You must implement this function in the get_sepsis_score.m
script.

6.​ driver.m: Do not change this script. It calls your load_sepsis_model function
only once and your get_sepis_score function for the first t = 1, 2, … time windows
(first row, first and second rows, etc.) of each patient. It also performs all file input and
output.

7.​ Add your code to the root/base directory of the master branch of your GitHub repository.
8.​ We will download your code, compile it using mcc, and run it on Google Cloud.
9.​ Here is a sample repo that you can use as a template:​

https://github.com/physionetchallenges/matlab-example-2019.git

Python-specific instructions

1.​ Using our sample Python prediction code (link) as a template, format your code in the
following way. Consider downloading this repository, replacing our code with your code,
and adding the updated files to your repository.

2.​ Dockerfile: Update to specify the version of Python that you are using on your
machine. Add any additional packages that you need. Do not change the name or
location of this file. The structure of this file is important, especially the 3 lines that are
marked as Do Not Delete.

3.​ requirements.txt: Add Python packages to be installed with pip. Specify the
versions of these packages that you are using on your machine. Remove unnecessary
packages, such as Matplotlib, that your prediction code does not need.

4.​ AUTHORS.txt, LICENSE.txt, README.md: Update as needed. Unfortunately, our
submission system will be unable to read your README.

5.​ get_sepis_score.py: Update this script to load and run your model using the
following functions.

a.​ load_sepsis_model: Update this function to load your model weights and any
parameters from files in your submission. It takes no input (place any filenames,
etc. in the body of the function itself) and returns any output that you choose. You
must implement this function in the get_sepsis_score.py script.

b.​ get_sepsis_score: Update this function to run your model. It takes a matrix of
clinical data (columns are clinical variables and rows are time windows) and the
output from load_sepsis_model as input and returns a single risk score a
single and binary prediction as output. You must implement this function in
the get_sepsis_score.py script.

6.​ driver.py: Do not change this script. It calls your load_sepsis_model function
only once and your get_sepis_score function for the first t = 1, 2, … time windows
(first row, first and second rows, etc.) of each patient. It also performs all file input and
output.

7.​ Add your code to the root/base directory of the master branch of your GitHub repository.

https://github.com/physionetchallenges/matlab-example-2019.git
https://github.com/physionetchallenges/python-example-2019

8.​ We will download your code, build a Docker container from your Dockerfile, and run it on
Google Cloud.

9.​ Here is a sample repo that you can use as a template:​
https://github.com/physionetchallenges/python-example-2019.git

R-specific instructions

1.​ Using our sample R prediction code (link) as a template, format your code in the
following way. Consider downloading this repository, replacing our code with your code,
and adding the updated files to your repository.

2.​ Dockerfile: Update to specify the version of R that you are using on your machine.
Add any additional packages that you need. Do not change the name or the location of
this file. The structure of this file is important, and especially the 3 lines that are marked
as Do Not Delete.

3.​ AUTHORS.txt, LICENSE.txt, README.md: Update as needed. Unfortunately, our
submission system will be unable to read your README.

4.​ get_sepis_score.R: Update this script to load and run your model using the
following functions.

a.​ load_sepsis_model: Update this function to load your model weights and any
parameters from files in your submission. It takes no input (place any filenames,
etc. in the body of the function itself) and returns any output that you choose. You
must implement this function in the get_sepsis_score.R script.

b.​ get_sepsis_score: Update this function to run your model. It takes a matrix of
clinical data (columns are clinical variables and rows are time windows) and the
output from load_sepsis_model as input and returns a single risk score and
a single binary prediction as output. You must implement this function in the
get_sepsis_score.R script.

5.​ driver.R: Do not change this script. It calls your load_sepsis_model function
only once and your get_sepis_score function for the first t = 1, 2, … time windows
(first row, first and second rows, etc.) of each patient. It also performs all file input and
output.

6.​ Add your code to the root/base directory of the master branch of your GitHub repository.
7.​ We will download your code, build a Docker container from your Dockerfile, and run it on

Google Cloud.
8.​ Here is a sample repo that you can use as a template:​

https://github.com/physionetchallenges/r-example-2019.git

Julia-specific instructions

9.​ Using our sample Julia prediction code (link) as a template, format your code in the
following way. Consider downloading this repository, replacing our code with your code,
and adding the updated files to your repository.

10.​Dockerfile: Update to specify the version of Julia that you are using on your machine.
Add any additional packages that you need. Do not change the name or the location of
this file. The structure of this file is important, and especially the 3 lines that are marked
as Do Not Delete.

11.​AUTHORS.txt, LICENSE.txt, README.md: Update as needed. Unfortunately, our
submission system will be unable to read your README.

https://github.com/physionetchallenges/python-example-2019.git
https://github.com/physionetchallenges/r-example-2019
https://github.com/physionetchallenges/r-example-2019.git
https://github.com/physionetchallenges/julia-example-2019

12.​get_sepis_score.jl: Update this script to load and run your model using the
following functions.

a.​ load_sepsis_model: Update this function to load your model weights and any
parameters from files in your submission. It takes no input (place any filenames,
etc. in the body of the function itself) and returns any output that you choose. You
must implement this function in the get_sepsis_score.jl script.

b.​ get_sepsis_score: Update this function to run your model. It takes an array
of clinical data (columns are clinical variables and rows are time windows) and
the output from load_sepsis_model as input and returns a single risk score
and a single binary prediction as output. You must implement this function in
the get_sepsis_score.jl script.

13.​driver.jl: Do not change this script. It calls your load_sepsis_model function
only once and your get_sepis_score function for the first t = 1, 2, … time windows
(first row, first and second rows, etc.) of each patient. It also performs all file input and
output.

14.​Add your code to the root/base directory of the master branch of your GitHub repository.
15.​We will download your code, build a Docker container from your Dockerfile, and run it on

Google Cloud.
16.​Here is a sample repo that you can use as a template:​

https://github.com/physionetchallenges/julia-example-2019.git

​
Docker-specific FAQs

1.​ Why containers?​
Containers allow you to define the environment that you think is best suited for your
algorithm. For example, if you think your algorithm needs a specific version of CentOS, a
certain version of a library, and specific frameworks, then you can use the containers to
specify this. Here are two links with good, data science-centric introductions to Docker:
https://towardsdatascience.com/how-docker-can-help-you-become-a-more-effective-data-scientist-7fc048ef91d5
https://link.medium.com/G87RxYuQIV​

2.​ Quickly, how can I test my submission locally?​
Install Docker → clone your repo → build an image → run it on a single patient. ​

3.​ Less quickly, how can I test my submission locally? Tell me more-or-less exactly
what to do.​
Here are instructions for testing the Python example code in Linux. You can test the
non-Python example code in a Mac, for example, in a similar way. If you have trouble
testing your code, then make sure that you can test the example code, which is known to
work.​
​
First, create a folder, docker_test, in your home directory. Then, put the example
code from GitHub in docker_test/python-example-2019, some of the training
data in docker_test/input_directory, and an empty folder for the predictions in
docker_test/output_directory. Finally, build a Docker image and ran the
example code using the following steps:​

https://github.com/physionetchallenges/julia-example-2019.git
https://towardsdatascience.com/how-docker-can-help-you-become-a-more-effective-data-scientist-7fc048ef91d5
https://link.medium.com/G87RxYuQIV
https://github.com/physionetchallenges/python-example-2019.git

​
​ user@computer:~/docker_test$ ls

input_directory output_directory python-example-2019​

user@computer:~/docker_test$ ls input_directory/
p000001.psv p000002.psv p000003.psv p000004.psv

p000005.psv​

user@computer:~/docker_test$ cd python-example-2019/​

user@computer:~/docker_test/python-example-2019$ docker
build -t my-image .​

Sending build context to Docker daemon 95.23kB
[...]
Successfully tagged my-image:latest​

user@computer:~/docker_test/python-example-2019$ docker

run -it -v
~/docker_test/input_directory:/physionet2019/input_directory -v
~/docker_test/output_directory:/physionet2019/output_directory
my-image bash​

root@[...]:/physionet2019# ls
AUTHORS.txt Dockerfile LICENSE.txt README.md

__pycache__ driver.py get_sepsis_score.py input_directory
output_directory requirements.txt​

root@[...]:/physionet2019# python driver.py
input_directory/ output_directory/​

root@[...]:/physionet2019# exit
Exit​

user@computer:~/docker_test$ cd ..​

​

​ user@computer:~/docker_test$ ls output_directory/
p000001.psv p000002.psv p000003.psv p000004.psv

p000005.psv​

4.​ How do I install Docker?​
Go here: https://docs.docker.com/install/ and install the Docker Community Edition.

5.​ Do I have to use your Dockerfile?​
NO. The only part of the Dockerfile we care about are the three lines marked as “DO
NOT EDIT”. These three lines help ensure that, during the build process of the container,
your code is copied into a folder called physionet2019 so that our cloud based

https://docs.docker.com/install/

pipelines can find your code and run it. Please do not change those three lines. You are
free to change your base image, and at times you should (see next question).

6.​ What’s the base image in Docker?​
Think of Docker as a series of images that are layered on
top of each other (see figure). This shows that our image is
built on top of a very lightweight Ubuntu OS with Python
3.7.3. We get it from the official Docker Hub (think of it as a
GitHub for Docker) for Python. Then install our requirements
(NumPy and SciPy) on it. If you need the latest version of TensorFlow, then search for it
on hub.docker.com and edit your file so that the first line of your Dockerfile now reads as:
FROM tensorflow If you need a specific version (say 1.11), then lookup the tags and
change it accordingly to FROM tensorflow:1.11.0

7.​ sklearn or scikit-learn?​
The single most common error we noticed in the requirements.txt file for Python
submissions was the sklearn package. If your entry uses scikit-learn, then you need to
install via pip using the package name scikit-learn instead of sklearn in your
requirements.txt file: See here.​

8.​ xgboost?​
For Python, replace python:3.7.3-slim with python:3.7.3-stretch in the first
line of your Dockerfile. This image includes additional packages, such as GCC, that
xgboost needs. Additionally, include xgboost in your requirements.txt file. Specify
the version of xgboost that you are using in your requirements.txt file.​
​
For R, add RUN R -e ‘install.packages(“xgboost”)’ to your Dockerfile.​

9.​ Pandas?​
Replace python:3.7.3-slim with python:3.7.3-stretch in the first line of your
Dockerfile.​

10.​Why can’t I install a common Python or R package using Python or R’s package
manager?​
Some packages have dependencies, such as GCC, that language package managers
do not install. Try replacing python:3.7.3-slim with python:3.7.3-stretch.​
​
If the first line of your Dockerfile is FROM python:3.7.3-slim, then you are building
a Docker image with the Debian Linux distribution, so you can install GCC and other
related libraries that many Python and R packages use by adding the line RUN apt
install build-essential to your Dockerfile before installing your Python or R
packages.​

11.​How do I build my image?​
git clone <<Your URL that ends in .git>>​
cd <<your repo name etc.>>​
ls​
​ You should see a Dockerfile and other relevant files here.​

https://hub.docker.com/
https://hub.docker.com/r/tensorflow/tensorflow/tags
https://scikit-learn.org/stable/install.html

docker build -t <<some image name — it has to be all lowercase>>
.​
docker images​
docker run -it <<image name from above>> bash​
​ This will take you into your container and you should see your code.​
​
See below for a full walkthrough.

FAQ

1.​ Should I submit your example code to test the submission system?​
No, please only submit your code to the submission system.​

2.​ Should I submit an empty repository to test the submission system?​
No, please only submit an entry after you have finished and tested your code.​

3.​ What can I do to make sure that my submission is successful?​
You can avoid most submission errors with the four following steps:

a.​ Do not change the driver script. We will only use the driver scripts (driver.m,
driver.py, and driver.R) in the MATLAB, Python, and R example
repositories (https://github.com/physionetchallenges), so any changes that you
make will not be used.

b.​ Do build your Docker image. The above FAQ provides advice for common
Docker-related issues.

c.​ Do test your Docker code on at least one file from the training dataset.
d.​ Do try to reduce the run time of your code by moving code from the

get_sepsis_score function to the load_sepsis_model function for

https://github.com/physionetchallenges

repeated tasks. Most submissions run in a couple of hours on the test data.​

4.​ Can I still use the old submission system? I don’t want to rewrite my code. ​
No. We are using a cloud submission system for the official phase. Our previous
submission system will not be available. The changes needed to run your code on the
cloud submission system should be minimal.​

5.​ What do I need to change in my code for the official phase? ​
We are asking participants to report a risk score and binary sepsis prediction using the
first k hours of a patient’s clinical record. You no longer need to load data, save results,
or think about file formats or extensions. See the example prediction code in
https://github.com/physionetchallenges/ for details.​

6.​ Do I need to upload the training data? What about the code for evaluating my
algorithm?​
No, but please train your model on the training data before submitting it.

7.​ Do you run the code that was in my GitHub repository at the time of submission?​
No, not yet. If you change your code after submitting, then we may or may not run the
updated version of your code. If you want to update your code but do not want us to run
the updates (yet), then please make changes in a subdirectory or in another branch of
your repository.

8.​ Why is my entry unsuccessful on your submission system? It works on my
computer. ​
There are several common reasons for unexpected errors:

a.​ You may have changed the driver script. For consistency across submissions
from different participants, we will use the driver scripts available on
https://github.com/physionetchallenges/.

b.​ You may have unmet dependencies. Note that packages in the requirements.txt
file for Python submissions may have dependencies, such as gcc, that pip is
unable to install. You can often identify such issues by trying to build a Docker
image from your Dockerfile.

c.​ You may have used a specific version of a Python or R package on your
computer, but you didn’t specify the version of the package in your Dockerfile or
your requirements.txt file, so we installed the latest available version of the
package. These versions may be incompatible. For example, if you train your
data using one version of a machine learning package and we test it with another
version of the package, then your entry may fail.​

9.​ Why does my code take so long to run on your submission system? It runs
quickly on my computer.​
We use a Google Cloud virtual machine with 2 CPU cores and 13 GB RAM. Our sample
prediction code in https://github.com/physionetchallenges/ runs in approximately 1
minute on the test data; other Docker-related and cloud-related steps require several
more minutes. If your prediction code takes significantly longer, then you may be able to
significantly reduce your run time with one or more of the following changes:

a.​ Train your model before submission.

https://github.com/physionetchallenges/
https://github.com/physionetchallenges/
https://github.com/physionetchallenges/

b.​ Omit unnecessary packages, files, etc. from your entry. For example, unless your
prediction code uses Matplotlib, remove it from your requirements.txt file.

c.​ Use the load_sepsis_model function to load model weights and perform other
tasks that you can reuse across patients. We call the load_sepsis_model function
once and the get_sepsis_score function many times, so you can use the
load_sepsis_model function to avoid repeated tasks.

d.​ Profile your code. For example, it should take roughly twice as much time to
make predictions for 200 patients as it does for 100 patients. If it takes
significantly longer, then there is likely room for improvement.

e.​ Look into best practices for any machine learning packages that you are using in
your entry. For example, loading model weights in TensorFlow for each patient in
the get_sepsis_score function instead of once in the load_sepsis_model function
will make your code run much more slowly.​

10.​My entry had some kind of error. Did I lose one of my ten entries?​
No, only scored entries (submitted entries that receive a score) count against the total
number of allowed entries.​

11.​Why is my utility score from the official phase lower than my utility score from the
unofficial phase?​
We are asking participants to write algorithms that make predictions in a causal manner
using past and current but not future information. Some participants submitted
non-causal algorithms for the unofficial phase, and we did not require algorithms to run
in a causal manner for the unofficial phase. We are now enforcing causality, so
algorithms that use future data for their predictions may receive lower utility scores on
the same test data.

	PhysioNet/CinC Challenge 2019 - Cloud Submission Instructions​Table of Contents
	​Preparation and submission instructions
	MATLAB-specific instructions
	Python-specific instructions
	R-specific instructions
	Julia-specific instructions
	​Docker-specific FAQs
	FAQ

