
Background Fetch Storage Design 
John Mellor, Aug 2017 

The Background Fetch API is similar to the Fetch and XMLHttpRequest APIs, except that 
requests are fetched in the background and automatically resumed across browser restarts, 
with the response/error eventually being delivered as a Service Worker event. This enables 
use cases like webapps that up/download video. 
 
Hence, unlike Fetch and XHR, Background Fetch needs to persist serialized requests and 
responses (sometimes partial) to disk. The actual body of the response will be stored 
separately by the DownloadService (it’s TBD where the request body gets stored). 
 
The API groups together a list of requests into a Background Fetch registration, each of 
which has a BackgroundFetchOptions containing title, icons, etc for the notification that 
allows the user to control that registration. 
 
Each ServiceWorkerRegistration can have many Background Fetch registrations, each of 
which can have many requests. 
 
It makes sense to store this in the Service Worker database (SWDB) since all data is 
“owned” by a ServiceWorkerRegistration, and ideally deleting a SW would atomically delete 
its Background Fetch metadata in the same transaction, hence avoiding getting out of sync. 
 
It should be possible to use the existing string-based user data mechanism by serializing 
custom protobufs to/from a string. 

Lifecycle 
Each request of a Background Fetch registration progresses through several states: 

1.​ Active (pending): not yet started. 
2.​ Active (before initial response): started, but the DownloadService hasn’t yet 

responded with the download GUID, initial response headers etc (“initial” is just to 
distinguish this response from any subsequent responses if the download is 
interrupted then resumed, since response headers are discarded when resuming). 

3.​ Active (after initial response): the DownloadService is fetching this request. 
4.​ Completed: the request has finished being fetched (successfully or with an error), 

and we have the full response. 
 
A registration is completed – and an event delivered to the SW – once all of its requests 
have completed. If one request fails, the remaining ones will still be attempted, as partial 
results are often still useful. 

https://github.com/WICG/background-fetch
https://cs.chromium.org/chromium/src/content/browser/service_worker/service_worker_context_wrapper.cc?q=ServiceWorkerContextWrapper::StoreRegistrationUserData
https://developers.google.com/protocol-buffers/docs/cpptutorial#parsing-and-serialization
https://developers.google.com/protocol-buffers/docs/cpptutorial#parsing-and-serialization
https://github.com/WICG/background-fetch#user-content-reacting-to-failure


Uniqueness of IDs 
Developers pass in an DOMString “id” when creating or getting a Background Fetch 
registration, henceforth referred to as developer_id. 
 
Unfortunately, these IDs can’t easily be relied on as primary keys, since it’s possible for JS to 
abort a BackgroundFetchRegistration (or wait for it to complete) then create another one 
with the same id, whilst holding onto a reference to the previous 
BackgroundFetchRegistration (or ActiveFetches/SettledFetches) objects. The methods on all 
of these objects must continue to work, i.e. stale data must not be deleted until the last 
object that refers to it is garbage collected, and aborting an old 
BackgroundFetchRegistration must not abort a newer one with the same developer_id, etc. 
 
So instead, we will generate a unique_id for every Background Fetch registration, and use 
that as our primary key throughout the Background Fetch code (from the Blink 
BackgroundFetchRegistration objects which will internally store their unique_id to 
disambiguate stale vs active ones, all the way to the Delegate that talks to the 
DownloadService and will group notifications according to their unique_id). 
 
This will ultimately make the code a lot simpler, as consistently using these unique_ids also 
removes various race conditions between Background Fetch registrations 
completing/aborting and new ones being created with the same developer_id. 
 
(And if we ever moved to global storage instead of or in addition to 
per-ServiceWorkerRegistration storage in the SWDB, unique_ids would have the added 
benefit of being globally unique, so we wouldn’t need to concatenate them with the profile ID 
and service_worker_registration_id in order to use them as keys in a global map). 

Important operations 
Key: sw_reg_id is an int64_t service_worker_registration_id; see above for developer_id and 
unique_id. 

Called once per startup (if there are any fetches) 
// Loads the options (title, icons, etc) of each Background Fetch registration that has active 
// requests. Additionally loads a list of active download GUIDs of all active requests for each 
// of those Background Fetch registrations. Together this is used to show/update the 
// downloading notifications, properly grouped by origin/registration, and for two-way sync 
// against the DownloadService’s list of GUIDs, i.e. abort any that only the DownloadService 
// persisted, and start any that only Background Fetch persisted. 
1. GetOptionsAndDownloadGUIDsForActiveRegistrations(); NOT DONE 

https://wicg.github.io/background-fetch/#backgroundfetchmanager
https://wicg.github.io/background-fetch/#backgroundfetchmanager
https://wicg.github.io/background-fetch/#backgroundfetchactivefetches
https://wicg.github.io/background-fetch/#backgroundfetchsettledfetches


Called once per created registration 
// Creates a new Background Fetch registration given id, options (title, icons, etc) and the list 
// of requests. 
2. CreateRegistration(sw_reg_id, developer_id, options, request_info_vector); DONEISH 

Called on demand by API 
// List registration IDs, and get options (title, icons, etc) by id. Both exclude registrations 
// for which MarkRegistrationForDeletion has already been called. 
3. GetIds() & GetRegistration(sw_reg_id, developer_id) NOT DONE 

Called once per downloading/completed request 
// Picks and loads the next BackgroundFetchRequestInfo object marked pending, in 
// global FIFO order (TODO: smarter scheduling). 
4. GetNextPendingRequestInfoAndMarkItActive(); INFLIGHT CL 2 
 
// Stores response headers, and response code/text for an active request. 
5. WriteActiveDownloadMetadata(sw_reg_id, unique_id, request_index, metadata); NOT 
DONE 
 
// Stores file path/size, url chain, etc for a completed request. Marks it as no longer active 
// by deleting the download GUID. 
6. WriteCompletedDownloadResponse(sw_reg_id, unique_id, request_index, response); 
NOT DONE 

Called once per finished registration 
// Loads completed data for a Background Fetch registration so it can be 
// delivered in a Service Worker event. 
7. ReadCompletedRegistration(sw_reg_id, unique_id); NOT DONE 
 
// Marks that the backgroundfetched/backgroundfetchfail/backgroundfetchabort event 
// has been dispatched. It would be nice to just call DeleteRegistration at this point, but 
// unfortunately if JavaScript holds a reference to a BackgroundFetchRegistration 
// object we need to keep the corresponding data around until the last such reference 
// is released (or until shutdown) – see Uniqueness of IDs. And we can’t just move the 
// Background Fetch registration’s data to RAM as it might consume too 
// much memory. So instead this step disassociates the developer_id from the unique_id, so 
// that existing JS objects with a reference to unique_id can still access the data, but it can 
// no longer be reached using GetIds or GetRegistration. 
8. MarkRegistrationForDeletion(sw_reg_id, developer_id, unique_id); DONE 
 
// Deletes all data for a Background Fetch registration. Called when the last JS reference to 

https://crbug.com/741609


// a BackgroundFetchRegistration (or ActiveFetches/SettledFetches) for unique_id is 
garbage 
// collected. MarkRegistrationForDeletion must already have been called for this unique_id. 
9. DeleteRegistration(sw_reg_id, unique_id); DONE 
 
// Deletes inactive registrations marked for deletion. Called when the browser restarts. 
10. GarbageCollect(); DONE 

Proposed Schema 
(This is all per ServiceWorkerRegistration, as usual for the SWDB user data mechanism.) 
 
Each Background Fetch registration has a BackgroundFetchOptions metadata, a 
developer-chosen developer_id, and a list of requests/responses. 
 
Background Fetch registrations and their requests are stored side by side rather than 
nesting the requests within their registration – this avoids having to load all of a Background 
Fetch registration’s requests/responses into memory at once, and enables efficiently 
querying only the active requests, or the next pending request. 
 
Key: 
Done: no symbol 
Not done: ❌ 
In Progress: 🐙 (by John) 🐙 (by Dan) 
 

user data key type (all protobufs serialized 
to/from strings) 

written 
by 

deleted 
by 

read by 

"bgfetch_active_unique_id_" 
+ developer_id 

{unique_id} 2 8 2, 3, 8, 
10 

"bgfetch_registration_" 
+ unique_id 

{unique_id, developer_id, 
origin, 
BackgroundFetchOptions} 

2 9 ❌1, 3 
🐙4, 10 

"bgfetch_request_" 
+ unique_id + "_" + 
request_index 

mojom::FetchAPIRequest, with 
a file path in place of the 
request body blob. 

2 9 ❌3, 
🐙4, 
❌7 

"bgfetch_pending_request_" 
+ creation_timestamp + "_" + 
unique_id + "_" + 
request_index 

{unique_id, request_index} 2 🐙4, 8 🐙4 

"bgfetch_active_request_" 
+ unique_id + "_" + 
request_index 

{download_service_guid, 
unique_id, request_index} 

🐙4 ❌6, 8 ❌1 

https://wicg.github.io/background-fetch/#backgroundfetchactivefetches
https://wicg.github.io/background-fetch/#backgroundfetchsettledfetches


"bgfetch_initial_response_" 
+ unique_id + "_" + 
request_index 

{response_code, 
response_text, 
response_headers} 

❌5 ❌9 ❌3,❌ 
7 

"bgfetch_completed_respon
se_" + unique_id + "_" + 
request_index 

mojom::FetchAPIResponse, 
excluding {response_code, 
response_text, 
response_headers} 

❌6 ❌9 ❌3,❌ 
7 

Explanation 
"bgfetch_pending_request_" and "bgfetch_active_request_" are split out to allow efficiently 
querying only the pending/active requests respectively – see Usage below. 
 
"bgfetch_initial_response_" and "bgfetch_completed_response_" are split out from 
"bgfetch_request_" to allow adding their information without having to read+parse+update 
"bgfetch_request_" (which would be less efficient, but not the end of the world). Also, 
"bgfetch_completed_response_" could be extended to allow efficiently querying only 
completed requests, which may become useful in future. 
 
The reason that `unique_id` and `request_index` are repeated in the types despite being 
present in the key is that GetUserDataForAllRegistrationsByKeyPrefix only returns a list of 
(`sw_reg_id`, `user_data_value`) pairs. We could avoid this redundancy by having a variant 
that also returns the `user_data_key`s and parse the key suffixes to extract the `unique_id` 
and `request_index`. 

Usage 
The trickiest operations to implement are #4 GetNextPendingRequestInfoAndMarkItActive 
and #1 GetOptionsAndDownloadGUIDsForActiveRegistrations: 
 
With this schema, #1 GetOptionsAndDownloadGUIDsForActiveRegistrations could be 
implemented as: 

1.​ Call GetUserDataForAllRegistrationsByKeyPrefix for key prefix 
"bgfetch_active_request_" (with no `limit`). 

2.​ For each of the unique registrations amongst these requests: 
a.​ Call GetRegistrationUserData to get the "bgfetch_registration_" value. 

3.​ It’ll also need to do garbage collection and consistency checks, such as: 
●​ Restarting downloads for requests with a bgfetch_active_request_ that the 

DownloadService has forgotten about. 
●​ Deleting all inactive registrations (normally these are deleted once the 

refcount of BackgroundFetchRegistraton V8 objects goes to zero, but browser 
shutdown can prevent that). 

 
With this schema, #4 GetNextPendingRequestInfoAndMarkItActive could be implemented 
as: 

https://cs.chromium.org/chromium/src/content/browser/service_worker/service_worker_context_wrapper.h?q=GetUserDataForAllRegistrationsByKeyPrefix
https://cs.chromium.org/chromium/src/content/browser/service_worker/service_worker_context_wrapper.h?q=GetUserDataForAllRegistrationsByKeyPrefix
https://cs.chromium.org/chromium/src/content/browser/service_worker/service_worker_context_wrapper.h?q=GetRegistrationUserData


1.​ Add a `limit` parameter to GetUserDataForAllRegistrationsByKeyPrefix and make it 
only return the first `limit` values matching the key prefix, in lexicographic order (this 
is just an early out from the LevelDB iteration it already does). 

2.​ Call GetUserDataForAllRegistrationsByKeyPrefix for key prefix 
"bgfetch_pending_request_" with a limit of 1. This will get the earliest request, since 
the keys are sorted in order of creation_timestamp. 

3.​ Skip requests that have already been started during the lifetime of this browser 
process and are awaiting a call to #4 WriteActiveDownloadMetadata to mark them as 
no longer pending. 

4.​ Call GetRegistrationUserData to get its "bgfetch_request_" value. 
5.​ Call GetRegistrationUserData to get its "bgfetch_registration_" value. 

 
Note that since the SWDB lays out its keys intelligently, neither of these queries has to page 
in SWDB data for SWs that don’t have a "bgfetch_active_request_" or 
"bgfetch_pending_request_" user data key respectively. 
 
In both cases, this would all need to be repeated for each StoragePartition in the relevant 
BrowserContext, since each StoragePartition has a separate Service Worker Database. 
Initially we’d just support BrowserContext::GetDefaultStoragePartition, but we’ll need to track 
these somehow once Site Isolation uses different StoragePartitions for different origins, or to 
support Background Fetch from extensions. 
 
This all carefully avoids reading in unnecessary request data, even for requests belonging to 
the same BackgroundFetchRegistration, as that would use unnecessary RAM. We should 
only have all the request data for a given BackgroundFetchRegistration loaded 
simultaneously a) when the webapp calls BackgroundFetchManager.fetch and b) when 
delivering the backgroundfetched event to the SW. 
 

https://cs.chromium.org/chromium/src/content/browser/service_worker/service_worker_context_wrapper.h?q=GetUserDataForAllRegistrationsByKeyPrefix
https://cs.chromium.org/chromium/src/content/browser/service_worker/service_worker_context_wrapper.h?q=GetUserDataForAllRegistrationsByKeyPrefix
https://cs.chromium.org/chromium/src/content/browser/service_worker/service_worker_context_wrapper.h?q=GetRegistrationUserData
https://cs.chromium.org/chromium/src/content/browser/service_worker/service_worker_context_wrapper.h?q=GetRegistrationUserData
https://cs.chromium.org/chromium/src/content/public/browser/browser_context.h?q=GetDefaultStoragePartition
https://wicg.github.io/background-fetch/#ref-for-dom-backgroundfetchmanager-fetch
https://wicg.github.io/background-fetch/#dom-serviceworkerglobalscope-onbackgroundfetched

	Background Fetch Storage Design 
	Lifecycle 
	Uniqueness of IDs 
	Important operations 
	Called once per startup (if there are any fetches) 
	Called once per created registration 
	Called on demand by API 
	Called once per downloading/completed request 
	Called once per finished registration 

	Proposed Schema 
	Explanation 
	Usage 


