Background Fetch Storage Design

John Mellor, Aug 2017
The Background Fetch API is similar to the Fetch and XMLHttpRequest APls, except that
requests are fetched in the background and automatically resumed across browser restarts,
with the response/error eventually being delivered as a Service Worker event. This enables
use cases like webapps that up/download video.

Hence, unlike Fetch and XHR, Background Fetch needs to persist serialized requests and
responses (sometimes partial) to disk. The actual body of the response will be stored
separately by the DownloadService (it's TBD where the request body gets stored).

The API groups together a list of requests into a Background Fetch registration, each of
which has a BackgroundFetchOptions containing title, icons, etc for the notification that
allows the user to control that registration.

Each ServiceWorkerRegistration can have many Background Fetch registrations, each of
which can have many requests.

It makes sense to store this in the Service Worker database (SWDB) since all data is
“‘owned” by a ServiceWorkerRegistration, and ideally deleting a SW would atomically delete
its Background Fetch metadata in the same transaction, hence avoiding getting out of sync.

It should be possible to use the existing string-based user data mechanism by serializing
custom protobufs to/from a string.

Lifecycle

Each request of a Background Fetch registration progresses through several states:

1. Active (pending): not yet started.

2. Active (before initial response): started, but the DownloadService hasn’t yet
responded with the download GUID, initial response headers etc (“initial” is just to
distinguish this response from any subsequent responses if the download is
interrupted then resumed, since response headers are discarded when resuming).

3. Active (after initial response): the DownloadService is fetching this request.

4. Completed: the request has finished being fetched (successfully or with an error),
and we have the full response.

A registration is completed — and an event delivered to the SW — once all of its requests
have completed. If one request fails, the remaining ones will still be attempted, as partial
results are often still useful.

https://github.com/WICG/background-fetch
https://cs.chromium.org/chromium/src/content/browser/service_worker/service_worker_context_wrapper.cc?q=ServiceWorkerContextWrapper::StoreRegistrationUserData
https://developers.google.com/protocol-buffers/docs/cpptutorial#parsing-and-serialization
https://developers.google.com/protocol-buffers/docs/cpptutorial#parsing-and-serialization
https://github.com/WICG/background-fetch#user-content-reacting-to-failure

Uniqueness of IDs

Developers pass in an DOMString “id” when creating or getting a Background Fetch
registration, henceforth referred to as developer_id.

Unfortunately, these IDs can’t easily be relied on as primary keys, since it's possible for JS to
abort a BackgroundFetchRegistration (or wait for it to complete) then create another one
with the same id, whilst holding onto a reference to the previous
BackgroundFetchRegistration (or ActiveFetches/SettledFetches) objects. The methods on all
of these objects must continue to work, i.e. stale data must not be deleted until the last
object that refers to it is garbage collected, and aborting an old
BackgroundFetchRegistration must not abort a newer one with the same developer _id, etc.

So instead, we will generate a unique_id for every Background Fetch registration, and use
that as our primary key throughout the Background Fetch code (from the Blink
BackgroundFetchRegistration objects which will internally store their unique_id to
disambiguate stale vs active ones, all the way to the Delegate that talks to the
DownloadService and will group notifications according to their unique_id).

This will ultimately make the code a lot simpler, as consistently using these unique_ids also
removes various race conditions between Background Fetch registrations
completing/aborting and new ones being created with the same developer _id.

(And if we ever moved to global storage instead of or in addition to
per-ServiceWorkerRegistration storage in the SWDB, unique_ids would have the added
benefit of being globally unique, so we wouldn’t need to concatenate them with the profile 1D
and service_worker_registration_id in order to use them as keys in a global map).

Important operations

Key: sw_reg_idis an int64_t service_worker_registration_id; see above for developer_id and
unique_id.

Called once per startup (if there are any fetches)

/I Loads the options (title, icons, etc) of each Background Fetch registration that has active
/I requests. Additionally loads a list of active download GUIDs of all active requests for each
/I of those Background Fetch registrations. Together this is used to show/update the

/I downloading notifications, properly grouped by origin/registration, and for two-way sync

/I against the DownloadService’s list of GUIDs, i.e. abort any that only the DownloadService
Il persisted, and start any that only Background Fetch persisted.

1. GetOptionsAndDownloadGUIDsForActiveRegistrations(); NOT DONE

https://wicg.github.io/background-fetch/#backgroundfetchmanager
https://wicg.github.io/background-fetch/#backgroundfetchmanager
https://wicg.github.io/background-fetch/#backgroundfetchactivefetches
https://wicg.github.io/background-fetch/#backgroundfetchsettledfetches

Called once per created registration

/I Creates a new Background Fetch registration given id, options (title, icons, etc) and the list
/I of requests.
2. CreateRegistration(sw_reg_id, developer _id, options, request_info_vector); DONEISH

Called on demand by API

/I List registration IDs, and get options (title, icons, etc) by id. Both exclude registrations
/I for which MarkRegistrationForDeletion has already been called.
3. Getlds() & GetRegistration(sw_reg_id, developer_id) NOT DONE

Called once per downloading/completed request

/I Picks and loads the next BackgroundFetchRequestinfo object marked pending, in
I/l global FIFO order (TODO: smarter scheduling).
4. GetNextPendingRequestinfoAndMarkltActive(); INFLIGHT CL 2

/I Stores response headers, and response code/text for an active request.
5. WriteActiveDownloadMetadata(sw_reg_id, unique_id, request_index, metadata); NOT
DONE

/I Stores file path/size, url chain, etc for a completed request. Marks it as no longer active
/l by deleting the download GUID.

6. WriteCompletedDownloadResponse(sw_reg_id, unique_id, request_index, response);
NOT DONE

Called once per finished registration

/I Loads completed data for a Background Fetch registration so it can be
I/l delivered in a Service Worker event.
7. ReadCompletedRegistration(sw_reg_id, unique_id); NOT DONE

/I Marks that the backgroundfetched/backgroundfetchfail/backgroundfetchabort event

/[has been dispatched. It would be nice to just call DeleteRegistration at this point, but

/[unfortunately if JavaScript holds a reference to a BackgroundFetchRegistration

I/l object we need to keep the corresponding data around until the last such reference

Il is released (or until shutdown) — see Unigueness of IDs. And we can’t just move the

/l Background Fetch registration’s data to RAM as it might consume too

/I much memory. So instead this step disassociates the developer_id from the unique_id, so
/I that existing JS objects with a reference to unique_id can still access the data, but it can
/I no longer be reached using Getlds or GetRegistration.

8. MarkRegistrationForDeletion(sw_reg_id, developer_id, unique_id); DONE

/I Deletes all data for a Background Fetch registration. Called when the last JS reference to

https://crbug.com/741609

/I a BackgroundFetchRegistration (or ActiveFetches/SettledFetches) for unique_id is
garbage

/I collected. MarkRegistrationForDeletion must already have been called for this unique_id.
9. DeleteRegistration(sw_reg_id, unique_id); DONE

/I Deletes inactive registrations marked for deletion. Called when the browser restarts.
10. GarbageCollect(); DONE

Proposed Schema

(This is all per ServiceWorkerRegistration, as usual for the SWDB user data mechanism.)

Each Background Fetch registration has a BackgroundFetchOptions metadata, a
developer-chosen developer_id, and a list of requests/responses.

Background Fetch registrations and their requests are stored side by side rather than
nesting the requests within their registration — this avoids having to load all of a Background
Fetch registration’s requests/responses into memory at once, and enables efficiently
querying only the active requests, or the next pending request.

Key:

Done: no symbol

Not done: X

In Progress: ' (by John) % (by Dan)

user data key type (all protobufs serialized | written | deleted | read by
to/from strings) by by

"bgfetch_active_unique_id " | {unique_id} 2 8 2,3,8,

+ developer _id 10

"bgfetch_registration_" {unique_id, developer _id, 2 9 1,3

+ unique_id origin, “4 10
BackgroundFetchOptions}

"bgfetch_request " mojom::FetchAPIRequest, with | 2 9 X3,

+ unique_id +" "+ a file path in place of the w4,

request_index request body blob. X7

"bgfetch_pending_request " | {unique_id, request_index} 2] w4

+ creation_timestamp +" " +
unique_id +" "+
request_index

"bgfetch_active_request " {download_service _guid, ! 6,8 | X1
+ unique_id +" "+ unique_id, request_index}
request_index

https://wicg.github.io/background-fetch/#backgroundfetchactivefetches
https://wicg.github.io/background-fetch/#backgroundfetchsettledfetches

"bgfetch_initial_response " | {response_code, X5 »9 A3, X
+ unique_id +" "+ response_text, 7

request_index response_headers}

"bgfetch_completed _respon | mojom::FetchAPIResponse, X6 9 23, X
se "+ unique id+" "+ excluding {response_code, 7
request_index response_text,

response_headers}

Explanation

"bgfetch_pending_request_" and "bgfetch_active_request_" are split out to allow efficiently
querying only the pending/active requests respectively — see Usage below.

"bgfetch_initial_response " and "bgfetch_completed response " are split out from
"bgfetch_request_" to allow adding their information without having to read+parse+update
"bgfetch_request " (which would be less efficient, but not the end of the world). Also,
"bgfetch_completed_response " could be extended to allow efficiently querying only
completed requests, which may become useful in future.

The reason that "unique_id" and ‘request_index" are repeated in the types despite being
present in the key is that GetUserDataForAllRegistrationsByKeyPrefix only returns a list of
(‘'sw_reg_id’, "user_data_value’) pairs. We could avoid this redundancy by having a variant
that also returns the “user_data_key's and parse the key suffixes to extract the "unique_id’
and ‘request_index’.

Usage

The trickiest operations to implement are #4 GetNextPendingRequestinfoAndMarkItActive
and #1 GetOptionsAndDownloadGUIDsForActiveRegistrations:

With this schema, #1 GetOptionsAndDownloadGUIDsForActiveRegistrations could be
implemented as:
1. Call GetUserDataForAllRegistrationsByKeyPrefix for key prefix
"bgfetch_active_request_" (with no “limit’).
2. For each of the unique registrations amongst these requests:
a. Call GetRegistrationUserData to get the "bgfetch_registration_" value.
3. It'll also need to do garbage collection and consistency checks, such as:
e Restarting downloads for requests with a bgfetch_active_request_ that the
DownloadService has forgotten about.
e Deleting all inactive registrations (normally these are deleted once the
refcount of BackgroundFetchRegistraton V8 objects goes to zero, but browser
shutdown can prevent that).

With this schema, #4 GetNextPendingRequestinfoAndMarklItActive could be implemented
as:

https://cs.chromium.org/chromium/src/content/browser/service_worker/service_worker_context_wrapper.h?q=GetUserDataForAllRegistrationsByKeyPrefix
https://cs.chromium.org/chromium/src/content/browser/service_worker/service_worker_context_wrapper.h?q=GetUserDataForAllRegistrationsByKeyPrefix
https://cs.chromium.org/chromium/src/content/browser/service_worker/service_worker_context_wrapper.h?q=GetRegistrationUserData

1. Add a 'limit" parameter to GetUserDataForAllRegistrationsByKeyPrefix and make it
only return the first “limit" values matching the key prefix, in lexicographic order (this

is just an early out from the LevelDB iteration it already does).

2. Call GetUserDataForAllRegistrationsByKeyPrefix for key prefix
"bgfetch_pending_request_" with a limit of 1. This will get the earliest request, since
the keys are sorted in order of creation_timestamp.

4. Call GetReqistrationUserData to get its "bgfetch_request " value.

5. Call GetReqistrationUserData to get its "bgfetch_registration_" value.

Note that since the SWDB lays out its keys intelligently, neither of these queries has to page
in SWDB data for SWs that don’t have a "bgfetch_active_request " or
"bgfetch_pending_request_" user data key respectively.

In both cases, this would all need to be repeated for each StoragePartition in the relevant
BrowserContext, since each StoragePartition has a separate Service Worker Database.
Initially we’d just support BrowserContext::GetDefaultStoragePartition, but we’ll need to track
these somehow once Site Isolation uses different StoragePartitions for different origins, or to
support Background Fetch from extensions.

This all carefully avoids reading in unnecessary request data, even for requests belonging to
the same BackgroundFetchRegistration, as that would use unnecessary RAM. We should
only have all the request data for a given BackgroundFetchRegistration loaded
simultaneously a) when the webapp calls BackgroundFetchManager.fetch and b) when
delivering the backgroundfetched event to the SW.

https://cs.chromium.org/chromium/src/content/browser/service_worker/service_worker_context_wrapper.h?q=GetUserDataForAllRegistrationsByKeyPrefix
https://cs.chromium.org/chromium/src/content/browser/service_worker/service_worker_context_wrapper.h?q=GetUserDataForAllRegistrationsByKeyPrefix
https://cs.chromium.org/chromium/src/content/browser/service_worker/service_worker_context_wrapper.h?q=GetRegistrationUserData
https://cs.chromium.org/chromium/src/content/browser/service_worker/service_worker_context_wrapper.h?q=GetRegistrationUserData
https://cs.chromium.org/chromium/src/content/public/browser/browser_context.h?q=GetDefaultStoragePartition
https://wicg.github.io/background-fetch/#ref-for-dom-backgroundfetchmanager-fetch
https://wicg.github.io/background-fetch/#dom-serviceworkerglobalscope-onbackgroundfetched

	Background Fetch Storage Design
	Lifecycle
	Uniqueness of IDs
	Important operations
	Called once per startup (if there are any fetches)
	Called once per created registration
	Called on demand by API
	Called once per downloading/completed request
	Called once per finished registration

	Proposed Schema
	Explanation
	Usage

