

KENDRIYA VIDYALAYA SANGATHAN, LUCKNOW REGION

Class - X (Session 2024-25)

MATHEMATICS BASIC (Code No.241)

[Marking Scheme]

Section-A

1) C, 5	1mark
2) D, no solution	1mark
3) A, (2,-5)	1mark
4) B, -22	1mark
5) C, 8 units	1mark
6) A, 8 cm	1mark
7) A, 0°	1mark
8) B, xy^2	1mark
9) B, 2	1mark
10) C, 6 cm	1mark
11) C, Median	1mark
12) B, 2.25 cm	1mark
13) D, $\cos A$	1mark
14) A, 90 cm^2	1mark
15) B, $3/13$	1mark
16) A, 3 cm	1mark
17) C, 2 distinct real roots	1mark
18) B, 20 cm	1mark
19) A	1mark
20) C	1mark

Section- B

21) Let A be the first term and d is the common difference of AP.

11^{th} term = $a_{11} = a + 10d$. and 16^{th} term = $a_{16} = a + 15d$ 1mark

On subtracting equation (1) from (2), we get,

$5d = 35$, so $d = 7$

Substituting the value of d in equation (1), we get,

$a + 10 \times 7 = 38$

$a = 38 - 70 = -32$

Now, 31^{st} term($a_{31} = a + 30d = -32 + 30 \times 7 = -32 + 210 = 178$ 1mark

OR

First, determine the AP,

105, 112, 119, 994 1mark

Here, $a = 105$, $d = 112 - 105 = 7$

Let there be 'n' terms of AP, then n th term = 994

So, by n th term formula,

$$105 + (n-1)7 = 994$$

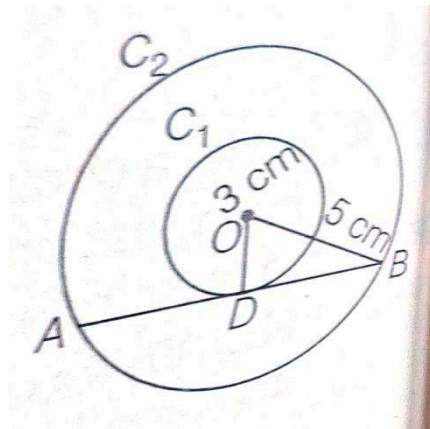
Solve and get answer, $n = 128$

1mark

22) substituting the correct values and solve

(1+1)mark

$$\sqrt{3}/2 \times \sqrt{3}/2 + 1/2 + 1/2 = 3/4 + 1/4 = 4/4 = 1$$



23) In right angled triangle ODB, by PGT,

(1+1)

$$OB^2 = OD^2 + DB^2$$

$$5^2 = 3^2 + DB^2$$

$$DB^2 = 25 - 9 = 16$$

$$DB = 4 \text{ cm} \text{ (taking positive square root)}$$

$$\text{Therefore, length of } AB = 2AD = 2 \times 4 = 8 \text{ cm}$$

24) Let P(5,-2), Q(6,4) and R(7,-2) be the given points, then by using distance formula,

$$\text{We get, length of } PQ = \sqrt{37} \text{ units}$$

(1+1)mark

$$\text{Length of } QR = \sqrt{37} \text{ units}$$

$$\text{Length of } RP = 2 \text{ units.}$$

$$\text{Here, } PQ = QR$$

Hence, P, Q and R are the vertices of an isosceles triangle.

OR

Given point P(x,y) is equidistant from the points A(5,1) and B(1,5). (1+1)mark

$$\text{So, } AP = BP$$

$$AP^2 = BP^2$$

$$(x-5)^2 + (y-1)^2 = (x-1)^2 + (y-5)^2$$

$$\text{Using identity } (a-b)^2 = a^2 + b^2 - 2ab$$

we ,get, required result as, $x = y$

25) Here, maximum frequency is 18 and the class corresponding to this frequency is 40- 60.

So, the model class is 40-60.

Here, $I = 40$, $f_1 = 18$, $f_0 = 6$, $f_2 = 10$ and $h = 20$

Using the formula, $\text{Mode} = I + (f_1 - f_0 / 2f_1 - f_0 - f_2) \times h$ (1+1)mark

$\text{Mode} = 40 + (18-6 / 2 \times 18 - 6 - 10) \times 20$

$\text{Mode} = 40 + 12 = 52$

Section - C

26) Let us assume that $\sqrt{3}$ is irrational number. Let $\sqrt{3} = a/b$ where a, b are co primes and b is not equal to zero. Now $\sqrt{3} = a/b \rightarrow 3 = (a/b)^2 \rightarrow 3b^2 = a^2$, a^2 is divisible by 3.

(3marks)

$\rightarrow a$ is divisible by 3 :

. let $a = 3c$

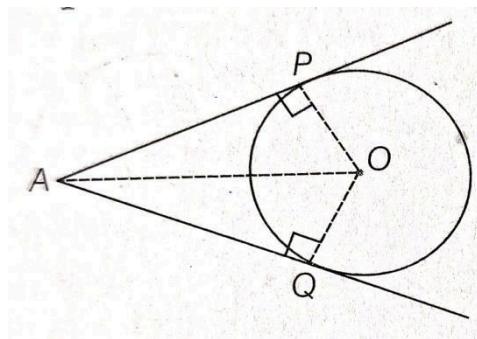
$a^2 = 9c^2 \rightarrow 3b^2 = 9c^2 \rightarrow b^2 = 3c^2$, a and b are divisible by 3. This contradicts our supposition that a/b are co primes .Hence our assumption is wrong. Hence $\sqrt{3}$ is an irrational number..

27) In ΔOPA and ΔOQA , we have,

$OP = OQ$. (radii of a circle)

$\angle OPA = \angle OQA = 90^\circ$ (angle between radius and point of contact) (1+1+1)mark

$OA = OA$. (common side)



So by RHS congruence rule,

$\Delta OPA \cong \Delta OQA$

Hence, by CPCT, $AP = AQ$

OR



We know that, the tangents to a circle from an external point are equal in length.

So, $AM = AP$, $BM = BN$, $CO = CN$ and $DO = DP$

On adding all above equations, we get

$$(AM + BM) + (CO + DO) = AP + BN + CN + DP$$

$$AB + CD = (AP + PD) + (BN + NC) = AD + BC \dots\dots\dots(1)$$

Given, ABCD is a parallelogram.

$$\text{So, } AB = CD \text{ and } BC = AD \dots\dots\dots(2)$$

(1+1+1)m

Then, from eq.(1), we get,

$$2AB = 2BC$$

$$AB = BC \dots\dots\dots(3)$$

From eq.(2) and (3), we get, $AB = BC = CD = DA$

Hence, ABCD is a rhombus.

$$\begin{aligned} 28) \text{LHS: } (\text{Cosec } A - \text{Cot } A)^2 &= (1/\text{Sin } A - \text{Cos } A/\text{Sin } A)^2 && (1+1+1)m \\ &= (1 - \text{Cos } A/\text{Sin } A)^2 = (1 - \text{Cos } A)^2/\text{Sin}^2 A \\ &= (1 - \text{Cos } A)^2 / (1 - \text{Cos}^2 A) = (1 - \text{Cos } A)(1 - \text{Cos } A) / (1 + \text{Cos } A)(1 - \text{Cos } A) \\ &= 1 - \text{Cos } A / 1 + \text{Cos } A = \text{RHS.} \quad \text{Proved} \end{aligned}$$

$$29) \text{Let the required natural numbers be 'x' and 'x+3', then by ATQ, } \quad (1+1+1)m$$

$$1/x - 1/x+3 = 3/28$$

$$= x^2 + 3x - 28 = 0$$

$$x^2 + 7x - 4x - 28 = 0$$

$$x = -7 \text{ or } x = 4$$

But -7 is not a natural numbers, so $x = 4$

Hence, required numbers are 4 and 7.

$$30) \text{Using Section formula,}$$

$$(x, y) = (mx_2 + nx_1) / m+n, (my_2 + ny_1) / m+n \quad (1+1+1)\text{mark}$$

And putting the values, we get,

$$m : n = 2:7$$

OR

Using section formula,

for getting the coordinates of the points of trisection as

P(8/3, -7/3) and Q(10/3, -5/3)

$$31) \quad (1+1+1)\text{mark}$$

I. Let us make the following table.

Class	Frequency (f_i)	x_i	$d_i = x_i - a$	$f_i d_i$
2-8	6	$\frac{2+8}{2} = 5$	$5 - 17 = -12$	$6(-12) = -72$
8-14	3	$\frac{8+14}{2} = 11$	$11 - 17 = -6$	$3(-6) = -18$
14-20	12	$\frac{14+20}{2} = 17 = a$	$17 - 17 = 0$	$12 \times 0 = 0$
20-26	11	$\frac{20+26}{2} = 23$	$23 - 17 = 6$	$11 \times 6 = 66$
26-32	8	$\frac{26+32}{2} = 29$	$29 - 17 = 12$	$8 \times 12 = 96$
Total	$\sum f_i = 40$			$\sum f_i d_i = 72$

Here, $a = 17$, $\sum f_i = 40$ and $\sum f_i d_i = 72$

$$\therefore \text{Mean } (\bar{x}) = a + \frac{\sum f_i d_i}{\sum f_i} = 17 + \frac{72}{40} = 17 + 1.8 = 18.8$$

Section- D

32) Let the cost of one bat = Rs. x and cost of one ball = Rs. y (1+1+3)mark

Then according to the question,

$$7x + 6y = 3800 \dots\dots\dots(1), \text{ and}$$

$$3x + 5y = 1750 \dots\dots\dots(2)$$

After solving equation (1) and (2), we get, $x = 500$ and $y = 50$

OR

For infinite number of solutions, $a_1/a_2 = b_1/b_2 = c_1/c_2$

Putting the respective values,

$$2/a-b = 3/a+b = -7/(3a+b-2)$$

On taking first two terms and solve, we get, $a = 5b \dots\dots\dots(1)$

On taking last two terms and solve, we get, $2b = a-3 \dots\dots\dots(2)$

Now, on solving equation (1) and (2) we get,

$$a = 5 \text{ and } b = 1$$

33) Statement of BPT: 1+1+3

Correct figure

Correct proof

Given A $\triangle ABC$ in which a line DE parallel to BC intersects AB at D and AC at E , i.e. $DE \parallel BC$.

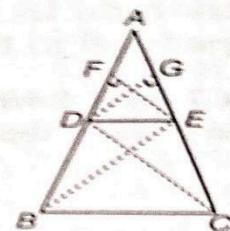
$$\text{To prove } \frac{AD}{DB} = \frac{AE}{EC}$$

Construction Join BE and CD .

Draw $EF \perp AB$ and $DG \perp AC$.

$$\text{Proof } \frac{\text{ar}(\triangle ADE)}{\text{ar}(\triangle BDE)} = \frac{\frac{1}{2} \times AD \times EF}{\frac{1}{2} \times DB \times EF} = \frac{AD}{DB} \dots\dots\dots(i)$$

$$\left[\because \text{Area of triangle} = \frac{1}{2} \times \text{Base} \times \text{Height} \right]$$



$$\text{Similarly, } \frac{\text{ar}(\triangle ADE)}{\text{ar}(\triangle DEC)} = \frac{\frac{1}{2} \times AE \times DG}{\frac{1}{2} \times EC \times DG} = \frac{AE}{EC} \dots\dots\dots(ii)$$

Since, $\triangle BDE$ and $\triangle DEC$ stand on the same base DE and between same parallel lines DE and BC .

$$\therefore \text{ar}(\triangle BDE) = \text{ar}(\triangle DEC) \dots\dots\dots(iii)$$

From Eqs. (i), (ii) and (iii), we get

$$\frac{AD}{DB} = \frac{AE}{EC} \dots\dots\dots(iv) \text{ Hence proved.}$$

34)

In right $\triangle BAD$, $\tan 45^\circ = AD/AB$

(1+1+3)mark

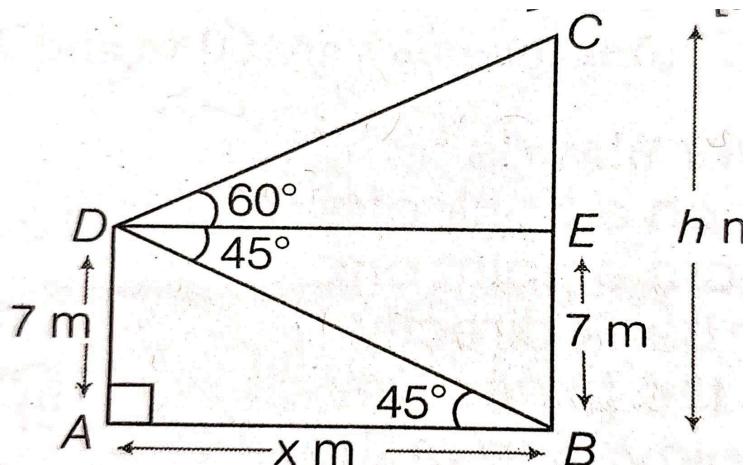
$$1 = 7/x, \text{ so } x = 7 \text{ m} \dots\dots\dots(1)$$

And in right $\triangle CED$, $\tan 60^\circ = CE/DE = CB - BE/AB$

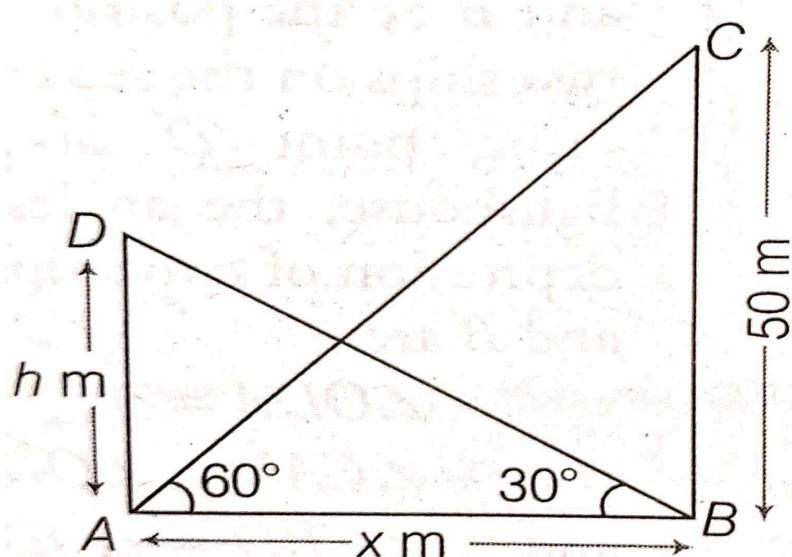
$$\sqrt{3} = (h - 7)/x. \text{ Putting the values from equation (1), we get,}$$

$$h = 7(\sqrt{3} + 1) \text{ m}$$

Hence, height of the tower is $7(\sqrt{3} + 1)$ m.



OR



In right triangle BAD, $\tan 30^\circ = AD/AB$

(1+1+3)mark

$$1/\sqrt{3} = h/x$$

$$h = x/\sqrt{3} \dots\dots\dots(1)$$

In right triangle CBA, $\tan 60^\circ = BC/AB$

$$\sqrt{3} = 50/x$$

So, $x = 50/\sqrt{3}$

On putting $x = 50/\sqrt{3}$ in equation (1)

We get, $h = 50/\sqrt{3} \times 1/\sqrt{3}$

$h = 50/3$ m

Hence, the height of the building is 16.66 m.

35)

(1+2+2)mark

Given, side of a square = 15 m

$$\therefore \text{Area of square} = (15)^2 = 225 \text{ m}^2$$

$$[\because \text{area of square} = (\text{side})^2]$$

Also given, length of rope = 5 m

\therefore Radius of arc = 5 m

(i) Area of the field graze by the horse,

$$A_1 = \frac{\theta}{360^\circ} \times \pi r^2 = \frac{90^\circ}{360^\circ} \times 3.14 \times (5)^2$$

$[\because \text{each angle of a square is } 90^\circ]$

$$= \frac{3.14 \times 25}{4} = \frac{78.5}{4} = 19.625 \text{ cm}^2$$

(ii) If length of rope = 10 m = r_1 (say)

Then, area of the field graze by the horse,

$$A_2 = \frac{\theta}{360^\circ} \times \pi r_1^2 = \frac{90^\circ}{360^\circ} \times 3.14 \times (10)^2$$

$$= \frac{3.14 \times 100}{4} = \frac{314}{4} = 78.5 \text{ cm}^2$$

\therefore Required increase in the grazing area

$$= A_2 - A_1 = 78.5 - 19.625 = 58.875 \text{ cm}^2$$

Section- E

36)

(1+1+2)mark

(i) Total possible outcomes = $52 - 6 = 46$

(ii) Number of favourable outcomes = 6

$P(\text{face card}) = 6/46 = 3/23$

(iii) Number of black cards in the shuffled cards = $13 + 7 = 20$

$P(\text{black card}) = 20/46 = 10/23$

OR

Number of black cards and ace = $20 + 2 = 22$:

Number of favourable outcomes = 46-22 = 24

P(neither a black card nor an ace) = 24/46 = 12/23

37)i) The volume of hemisphere = $2/3\pi r^3$ (1+1+2)mark

(ii) The volume of hemispherical dome = $2/3\pi r^3 = 2/3 \times 22/78 \times (21)^3 = 19404 \text{ m}^3$.

iii) The cloth required to cover the hemispherical dome = curved surface area of hemispherical dome = $2\pi r^2$

$$r=14 \text{ m}, \quad =2\pi r^2 = 2 \times 14 \times 14 = 88 \times 14 = 1232 \text{ m}^2$$

OR

Total surface area of the combined figure = surface area of hemispherical base + surface area of cuboidal top

$$= 2r + 2hl + 2bh + lb = 1232 + 2 \times 8 \times 4 + 2 \times 6 \times 4 + 6 \times 8 = 1232 + 64 + 48 + 48 = 1392 \text{ m}^2$$

Surface area of hemispherical dome = 1392 m.

38)i) $(p-1)(4)^2 + p(4) + 1 = 0$ (1+1+2)mark

$$16p - 16 + 4p + 1 = 0$$

$$20p = 15$$

$$\text{So, } P = 15 / 20 = 3/4$$

(ii) Required quadratic polynomial is:

$$k[x^2 - (\text{sum of zeroes})x + (\text{product of zeroes})]$$

$$= k[x^2 - (-12+5)x + (-12)(5)]$$

= $k(x^2 + 7x - 60)$, where k is any arbitrary constant.

(iii) product of zeroes = constant term/ coefficient of x^2

$$m = 5$$

OR

Required quadratic polynomial is : $x^2 + 7x + 10$