
Data sources
Allow integrations to provide data sources to be consumed by other sources. Integrations
decide their own configuration. Data will be forwarded to other sources via variables. That
way it will be easy to consume, share and avoid fetching duplicate data to source multiple
sensors.

Data sources consumers can consume multiple sources.

Data source updates will be controlled by the data source. Data source can implement
polling internally. -> this is scrapped and should be done via triggers. We still want data
sources to be loaded on demand.

Data source examples
● Fetch data from a URL
● Historical data from database
● Query InfluxDB
● Run forecast model on current data
● Run image recognition on camera
● Command line command (not a good idea, see danger heading)
● Query calendar events
● Detailed driving or route directions
● Query large language model

Using data sources
Data sources will be a new action in the script syntax. This makes it available to automation
and scripts.

Data sources are defined like variables, except the value is executed by the referenced
integration.

Data sources should be able to access variables available in the scope. Could render some
part of their config with that.

script:
notify_daily_energy:
- data_sources:

Output of each data source is stored in variable
with same name as key in config
today_usage:
platform: recorder
type: sum
statistic: sensor.total_energy_usage

period: today # this_week, last_week, this_month
forecast_usage:
platform: energy_forecaster
type: forecast
statistic: sensor.total_energy_usage
period: today

- service: notify.paulus
message:
> Your usage today is {{ today_usage }} and we expect a total

of {{ forecast_usage }}.

Danger of data sources
If we allow doing command line stuff, it will allow UI access/blueprints to run arbitrary code.
Probably not a good idea.

For our first version we should limit to things that only expose read only things.

Alternative idea by Frenck
The first time this idea came up, we’ve pivoted and implemented below instead:

The alternative idea is for triggers to be used to feed into template entities.

Standardize how templated entities are defined for integrations that need it. So rest can
define multiple sensors etc.

template:
- trigger:

- platform: time_pattern
This will update every night
hours: 0
minutes: 0
sensor:
Keep track how many days have past since a date
- name: "Not smoking"
state: '{{ ((as_timestamp(now()) -

as_timestamp(strptime("06.07.2018", "%d.%m.%Y"))) / 86400) |
round(default=0) }}'

unit_of_measurement: "Days"

Alternative: Service Calls
Discussed in this Architecture discussion, service calls are be too broad of an API, and also
may encourage side effects (similar concern as wanting datasources to be read-only above)

Alternative: Template functions
Discussed in this Architecture discussion, could allow integration specific ways to extend
templates directly with arbitrary routines. Doing I/O in a template also seems risky and
perhaps difficult, has a similarly broadly open API, and may cause difficult to diagnose
issues given templates are used everywhere.

Data source consumer example: template (old)
Legacy example, this is not the right syntax.

Template integration will add support for top level yaml to define source + templates that will
consume the data of the source.

Extra: add variables block that allow user to define variables with source variables to make
defining template entities easier.

template:
sources:
- platform: mqtt
topic: home/status
type: json
variable: home_status

sensor:
version:
friendly_name: Home Version
value_template: {{ home_status.version }}

binary_sensor:
online:
friendly_name: Home Online
value_template: {{ home_status.online }}

https://github.com/home-assistant/architecture/discussions/777
https://github.com/home-assistant/architecture/discussions/777#discussioncomment-3042162

