
Rhino Accounts Overview

Table of Contents

About Rhino Accounts
Using Rhino Accounts for Authorization as a Client
Using Rhino Accounts for Authorization as a Resource Server
Using Rhino Accounts for Authentication as a Client
Appendix

About Rhino Accounts

What is Rhino Accounts?

An authorization and authentication framework that can be used by applications to delegate
access to resources and verify the identity of users. With Rhino Accounts, the goal is to make it
easy for multiple services within Rhino and related 3rd parties to share resources and
authenticate users by using a centralized system. For the end-user, a single account is all that’s
needed to access all Rhino related services.

What is Rhino Accounts based on?

It is based on OAuth 2.0, per the RFC 6749 specifications. Rhino Accounts implements all the
features of OAuth 2.0 that are prefixed with REQUIRED and MUST, and avoids implementing any
behavior that is prefixed with MUST NOT. Every attempt is made to implement features that are
prefixed with SHOULD. Likewise, behavior prefixed with SHOULD NOT is avoided when
feasible, particularly if it has security implications. When deemed advantageous for Rhino,
features labeled as OPTIONAL have been implemented. In general, the implementation should
allow any 3rd party OAuth 2.0/OpenID Connect client to take advantage of the system with little
or no modification.

Authentication vs Authorization

Rhino Accounts aims to satisfy both needs. The need for authentication occurs when a client
needs to verify the identity of a user. For example, eLIS needs to know that a user claiming to
be Marley Rhino is indeed Marley Rhino when creating a shipment. The need for authorization
occurs when a client needs to access the user’s protected resources. For example, the Remote
API in eLIS might need an access token to perform certain actions on behalf of a user. Rhino
Accounts, based on OAuth 2.0 and OpenID Connect, can perform either of these needs
individually or simultaneously.

A note about security.

Rhino Accounts is designed with the best intentions as an authorization/authentication provider.
There is extensive development time devoted to security. However, developers should note that
comprehensive security can only be achieved by trust. In particular, the client implementation of

https://tools.ietf.org/html/rfc6749

OAuth 2.0 as well as the user agent play a large role in the overall level of security achieved in
an OAuth 2.0 ecosystem, and Rhino Accounts is reliant on them to provide a secure
environment.

User Agent Requirements.

Rhino Accounts has slightly more stringent user agent requirements (browsers released in the
last ~6 years) than most other OAuth 2.0 providers. This is done for 3 reasons:

1.​ Only browsers that are still supported by their vendors are supported. This is done to
ensure that if any security holes are discovered in the browser, the vendor will be
encouraged to fix it.

2.​ The UI is based on the same framework as eLIS (The eds JavaScript framework), which
offers a more interactive user experience. The eds framework requires certain HTML5
features which are only available in more recent browsers.

3.​ Rhino Accounts takes advantage of several newer security features regarding cookies
and TLS that unfortunately have only been implemented (or implemented correctly) on
recent browsers.

Supported Browsers:

●​ Microsoft IE 10 or later (11 or later recommended; Edge is supported)
●​ Apple Safari 6 or later
●​ Google Chrome
●​ Mozilla Firefox
●​ Opera

Client Registration

Contact support@mcneel.com to register a client with Rhino Accounts.

Using Rhino Accounts for Authorization as a Client

Overview

Rhino Accounts supports two different authorization workflows depending on the type of your
application: Authorization Code flow and the Implicit flow. In general, applications that are
confidential, such as a website hosted in a web server, should always use the Authorization
Code flow for increased security. In contrast, applications that are not confidential, such as an
application running on a user’s device like Rhinoceros, should use the Implicit flow, which
requires additional security considerations since they are not able to keep secrets confidential to
the user or a malicious third party. In either case, your application will need to be registered as a
client in Rhino Accounts before your application performs any requests. The documentation
below explains in detail how a client interacts with Rhino Accounts–keep in mind that a reliable
client library will implement most of the details for you if you choose to use one.

mailto:support@mcneel.com

WARNING: Do not use any of the two authorization flows for authentication.

Instead, see Using Rhino Accounts for Authentication as a Client

Using the Authorization Code flow:

The authorization sequence begins when your application redirects a browser to a Rhino URL;
the URL includes query parameters that indicate the type of access being requested. Rhino
Accounts handles the user authentication, session selection, and user consent. The result is an
authorization code, which the client (i.e. your application) can exchange for an access token,
that can be ultimately used to access the user’s protected resources.

Preparing to start the flow:

Make sure you know your app's client ID and client secret, which you will have provided when
registering your app as a client in Rhino Accounts. In addition, you will need to know the scopes
(such as profile or email) that your app needs to request. See the documentation for the
APIs your app uses for the required scopes.

Requesting a token

Generate either a GET or a application/x-www-form-urlencoded POST request to
https://accounts.rhino3d.com/oauth2/auth. This endpoint is accessible over
HTTPS; plain HTTP connections are refused. To avoid capturing request data in browser
caches or logs, you should strive to use a POST request over a GET request if possible. The
request should have the following parameters:

https://accounts.rhino3d.com/oauth2/auth

Parameter Values Details

response_type code For the Authorization Code flow, clients should
use code.

client_id The client ID of
your application

Identifies the client that is making the request.
The value passed in this parameter must exactly
match the value of your application.

redirect_uri One of the
redirect_ur
i values listed
for your client.

Determines where the response is sent. The
value of this parameter must exactly match one of
the values listed for your client. (including the http
or https scheme, case, and trailing '/').

scope Space-delimited
set of
permissions that
the application
requests.

Optional. Identifies the API access that your client
is requesting. The values passed in this
parameter inform the consent screen that is
shown to the user. If no scope is given, profile
will be assigned.

state Any string under
1024 chars.

Optional. Provides any state that might be useful
to your application upon receipt of the response.
The Rhino Accounts Server roundtrips this
parameter, so your application receives the same
value it sent. To mitigate against cross-site
request forgery (CSRF), it is strongly
recommended to include an anti-forgery token in
the state, and confirm it in the response.

prompt none
consent
login

Optional. A space delimited list of string values
that specifies whether the authorization server
should attempt to prompt the user for
reauthentication and consent. Note that the
request is not guaranteed to be fulfilled. The
possible values are:
none The authorization server does not display
any authentication or user consent screens; it will
return an error if the user is not already
authenticated and has not pre-configured consent
for the requested scopes. You can use none to
check for existing authentication and/or consent.
consent The authorization server prompts the
user for consent before returning information to
the client.

http://en.wikipedia.org/wiki/Cross-site_request_forgery

login The authorization server prompts the
user to reauthenticate before returning
information to the client.

max_age A positive
number
denoting
seconds.

Specifies the allowable elapsed time in seconds
since the last time the user was actively
authenticated by Rhino Accounts. If the elapsed
time is greater than this value, the behavior is the
same as specifying login for prompt.

login_hint A string
representing
either a user’s
id (sub) or an
email address
associated with
their account

If your client knows which user it is expecting to
login, you may specify said user using this field
preferably using the user’s unique id (sub) or
optionally an email address. Note that this field is
merely a suggestion to Rhino Accounts and may
not be heeded due to various security and/or
technical reasons.

Exchanging an authorization code for a token

The Rhino Accounts server responds to your application's access request by using the URL
specified in the request. If the user approves the access request, then the response contains an
authorization code. If the user does not approve the request or the request is invalid, the
response contains an error code based on RFC 6749 . All responses are returned to your web
server on the query string, as shown below. Keep in mind that the authorization code is url safe,
which means you don’t have to url-encode it when sending it to the Rhino Accounts server (but
you could).

An error response:
https://demo.appspot.com/auth?error=access_denied&state=MY_STATE_HERE

An authorization code response:
https://demo.appspot.com/auth?code=AUTH_CODE_HERE&state=MY_STATE_HERE

To exchange an authorization code for an access token, make a
application/x-www-form-urlencoded POST request with Basic Authentication to
https://accounts.rhino3d.com/oauth2/token. The Authorization header must
have client_id:client_secret encoded in base64 as its value, where client_id is
the id of your application and client_secret is the secret registered with your application in
Rhino Accounts. The request must have the following parameters:

https://tools.ietf.org/html/rfc6749
https://en.wikipedia.org/wiki/Basic_access_authentication
https://accounts.rhino3d.com/oauth2/token

Parameter Values

code The authorization code returned from the initial request.

redirect_uri One of the redirect_uri values listed for your client. The value here
must exactly match the value passed in for the initial authorization code
request.

grant_type As defined in the OAuth 2.0 specification, this field must contain a value of
authorization_code.

An example request:
POST
Authorization: Basic AKedpskdasdfw==
https://accounts.rhino3d.com/oauth2/token?
code=ACCESS_CODE_HERE&
redirect_uri=https://demo.appspot.com&
grant_type=authorization_code

A successful response to this request contains the following JSON response, where
access_token is the token that can be used to access the user’s protected resources, and
expires_in is the remaining lifetime of the access_token in seconds:
{
 "access_token":ACCESS_TOKEN_HERE,
 "expires_in":3920,
 "scope":”profile”,
 "token_type":”bearer”
}

Keep in mind the access_token is url safe, and does not have to be url-encoded when sent to
a resource server.

Revoking a valid access token

See Revoking an access token programmatically

Using the Implicit flow:

The authorization sequence begins when your application redirects a browser to a Rhino URL;
the URL includes query parameters that indicate the type of access being requested. Rhino
Accounts handles the user authentication, session selection, and user consent.
The result is an access token that can be used to access the user’s protected resources.

https://accounts.rhino3d.com/oauth2/token
https://demo.appspot.com

Requesting a token

Generate either a GET or a application/x-www-form-urlencoded POST request to
https://accounts.rhino3d.com/oauth2/auth. This endpoint is accessible over
HTTPS; plain HTTP connections are refused. To avoid capturing request data in browser
caches or logs, you should strive to use a POST request over a GET request when possible.
The request should have the following parameters:

Parameter Values Details

response_type token For the Implicit flow, clients should use token.

client_id The client ID of
your application

Identifies the client that is making the request.
The value passed in this parameter must exactly
match the value of your application.

redirect_uri One of the
redirect_ur
i values listed
for your client.

Determines where the response is sent. The
value of this parameter must exactly match one of
the values listed for your client. (including the http
or https scheme, case, and trailing '/').

scope Space-delimited
set of
permissions that
the application
requests.

Optional. Identifies the API access that your client
is requesting. The values passed in this
parameter inform the consent screen that is
shown to the user. If no scope is given, profile
will be assigned.

state Any string under Optional. Provides any state that might be useful

https://accounts.rhino3d.com/oauth2/auth

1024 chars. to your application upon receipt of the response.
The Rhino Accounts Server roundtrips this
parameter, so your application receives the same
value it sent. To mitigate against cross-site
request forgery (CSRF), it is strongly
recommended to include an anti-forgery token in
the state, and confirm it in the response.

prompt none
consent
login

Optional. A space delimited list of string values
that specifies whether the authorization server
should attempt to prompt the user for
reauthentication and consent. Note that the
request is not guaranteed to be fulfilled. The
possible values are:
none The authorization server does not display
any authentication or user consent screens; it will
return an error if the user is not already
authenticated and has not pre-configured consent
for the requested scopes. You can use none to
check for existing authentication and/or consent.
consent The authorization server prompts the
user for consent before returning information to
the client.
login The authorization server prompts the
user to reauthenticate before returning
information to the client.

max_age A positive
number
denoting
seconds.

Specifies the allowable elapsed time in seconds
since the last time the user was actively
authenticated by Rhino Accounts. If the elapsed
time is greater than this value, the behavior is the
same as specifying login for prompt.

Handling the token response

Rhino Accounts returns an access token to your application if the user grants your application
the permissions it requested, or an error response based on RFC 6749 if the user denies the
request or if the request is invalid. The access token is returned to your application in the
fragment as part of the access_token parameter. Since a fragment is not returned to the
server, client-side code must parse the fragment and extract the value of the access_token
parameter.
The other parameters included in the response are expires_in, token_type, scope, and
state. These parameters describe the lifetime of the token in seconds, the kind of token that is

http://en.wikipedia.org/wiki/Cross-site_request_forgery
https://tools.ietf.org/html/rfc6749

being returned, the scope of the access token, and the state parameter with the same value as
the value sent in the original request.

An error response:
https://demo.appspot.com/oauthcallback#error=access_denied&state=STAT
E

A token response:
https://demo.appspot.com/oauthcallback#access_token=ACCES_TOKEN_HERE&
token_type=bearer&expires_in=3600&scope=email+profile

Revoking a valid access token

See Revoking an access token programmatically

Using Rhino Accounts for Authorization as a Resource Server

Overview

As a resource server, such as a protected file server or a license storage system, you can
require requests to your service to include an access token issued by Rhino Accounts.
You can then ask Rhino Accounts to validate the access token to ensure it is valid, and
(perhaps) see whether the access token meets the authorization criteria for the request. This
spares the resource server from implementing time-consuming and potentially vulnerable
authorization mechanisms. The implementation details on how a resource server requests an
access token from a client is left up to the designers of such system, but they MUST implement
TLS to keep the access tokens confidential at all times.

Validating an access token

To validate an access token, make a GET request to
https://accounts.rhino3d.com/oauth2/tokeninfo with Bearer Authentication. The
Authorization header must have the access token as shown in the example below.

An example request:
GET
Authorization: Bearer ACCESS_TOKEN_HERE
https://accounts.rhino3d.com/oauth2/tokeninfo

An example response:
{"scope": "profile", "audience": "client_001", "expires_in": 86002}

https://tools.ietf.org/html/rfc6750

The response will have a status code of 200 if successful, or a status code equal or greater to
400 if there was a problem, along with an error message as defined in RFC 6749.

The resource server is expected to audit the response’s values to determine whether the token
is sufficient for the request it has been asked to fulfill.

Using Rhino Accounts for Authentication as a Client

Rhino Accounts is OpenID Connect compliant and supports three different authentication
workflows depending on the type of your application. Because OpenID Connect is built on top of
OAuth2, you can ask Rhino Accounts for both authorization and authentication in a single
request. The three flows supported are : Authorization Code flow, the Implicit flow, and the
Implicit id_token only flow. In general, applications that are confidential, such as a website
hosted in a web server, should always use the Authorization Code flow for increased security. In
contrast, applications that are not confidential, such as an application running on a user’s device
like Rhinoceros, should use the Implicit flow, which requires additional security considerations
since they are not able to keep secrets confidential to the user or a malicious third party. The
Implicit id_token only flow is identical to the implicit flow, except that it can only be used for
authentication and not authorization. It can be used if you are a non confidential application and
only require Rhino Accounts to perform authentication on your behalf. In either case, your
application will need to be registered as a client in Rhino Accounts before your application
performs any requests. The documentation below explains in detail how a client interacts with
Rhino Accounts–keep in mind that a reliable OpenID Connect client library will implement most
of the details for you if you choose to use one.

Using the Authorization Code flow:

The flow is identical to the flow used for authorization, except as explained below. All the
parameters used for authorization are supported, and you can use them to request authorization
and authentication in a single step.

In this flow, you must include openid in the set of scope values. This will cause Rhino
Accounts to issue an OpenID Connect token together with the access token. In addition, the
following parameters are supported in addition to all the parameters used for authorization:

nonce Any string. Recommended. String value used to associate a
Client session with an OpenID Connect token,
and to mitigate replay attacks. The value is
passed through unmodified from the
Authentication Request to the ID Token.

An example response from the token endpoint:

https://tools.ietf.org/html/rfc6749

{
 "access_token":ACCESS_TOKEN_HERE,
 "id_token":OPENID_CONNECT_TOKEN_HERE,
 "expires_in":3920,
 "scope":”profile”,
 "token_type":”bearer”
}

You can view more information about the OpenID Connect token and how you can use it to
verify the client’s identity in the appendix.

Using the Implicit flow:

The flow is identical to the flow used for authorization, except as explained below. All the
parameters used for authorization are supported, and you can use them to request authorization
and authentication in a single step.

In this flow, you must include openid in the set of scope values. In addition, the
response_type must be set to id_token token. This will cause Rhino Accounts to issue
an OpenID Connect token together with the access token. In addition, the following parameters
are supported in addition to all the parameters used for authorization:

nonce Any string. Recommended. String value used to associate a
Client session with an OpenID Connect token,
and to mitigate replay attacks. The value is
passed through unmodified from the
Authentication Request to the ID Token.

An example response from the token endpoint:
https://demo.appspot.com/oauthcallback#access_token=ACCES_TOKEN_HERE&
token_type=bearer&expires_in=3600&scope=email+profile&id_token=OPENID
_CONNECT_TOKEN_HERE

You can view more information about the OpenID Connect token and how you can use it to
verify the client’s identity in the appendix. Note that if you’re trying to verify a client’s identity
using an implicit flow, you must take additional precautions that are out the scope for this
document.

Using the id_token only flow:

This flow is identical to the Implicit flow, except that no access token is returned; only an OpenID
Connect token is returned. This flow is useful for applications that only want to perform
authentication and not authorization.

In this flow, you must include openid in the set of scope values. In addition, the
response_type must be set to id_token. This will cause Rhino Accounts to issue an
OpenID Connect token but no access token. In addition, the following parameters are supported
in addition to all the parameters used for authorization:

nonce Any string. Recommended. String value used to associate a
Client session with an OpenID Connect token,
and to mitigate replay attacks. The value is
passed through unmodified from the
Authentication Request to the ID Token.

An example response from the token endpoint:
https://demo.appspot.com/oauthcallback#id_token=OPENID_CONNECT_TOKEN_
HERE

You can view more information about the OpenID Connect token and how you can use it to
verify the client’s identity in the appendix. Note that if you’re trying to verify a client’s identity
using an implicit flow, you must take additional precautions that are out the scope for this
document.

Appendix

Revoking an access token programmatically

OpenID Connect Tokens

RFC6749 security considerations implemented by Rhino Accounts

RFC6819 security considerations implemented by Rhino Accounts

Revoking an access token programmatically

Sometimes it is desirable for an application to invalidate a valid token it holds, perhaps because
a user no longer desires using the service it provides. To revoke a token (i.e. make it unusable),

https://demo.appspot.com/oauthcallback#id_token=OPENID_CONNECT_TOKEN_HERE
https://demo.appspot.com/oauthcallback#id_token=OPENID_CONNECT_TOKEN_HERE

make a application/x-www-form-urlencoded POST request
https://accounts.rhino3d.com/oauth2/revoke.

An example request:
POST
https://accounts.rhino3d.com/oauth2/revoke&token=ACCESS_TOKEN_HERE

The response will be empty and have a status code of 200 if successful, or a status code equal
or greater to 400 if there was a problem, along with an error message as defined in RFC 6749.

OpenID Connect Tokens

In all flows used for authentication, Rhino Accounts issues an OpenID Connect token (ID token).
ID tokens are cryptographically signed JSON Web Tokens (JWTs). They are signed by Rhino
Accounts. If you received a token using the implicit flow or using the authorization code flow
indirectly from the Rhino Accounts server, you MUST verify the signature of the token before
reading its contents as described here. TLS server verification may be a substitute for verifying
the signature of the token if and only if you received the id token directly from Rhino Accounts in
the authorization code flow. ID tokens contain “claims” about a user, such as their unique id,
their name, or their locale. The amount of claims included in an ID token depends on the scope
specified when the request for authentication was done. At the very least, all ID tokens are
guaranteed to include the user’s unique id for verifying their identity. The following is a list of
possible claims included in an access token:

Guaranteed claims (they appear in every ID token issued by Rhino Accounts):

●​ iat Time at which the JWT was issued. Its value is a JSON number representing the
number of seconds from 1970-01-01T0:0:0Z as measured in UTC until the date/time.

●​ exp Expiration time on or after which the ID Token MUST NOT be accepted for
processing. The processing of this parameter requires that the current date/time MUST
be before the expiration date/time listed in the value. Implementers MAY provide for
some small leeway, usually no more than a few minutes, to account for clock skew. Its
value is a JSON number representing the number of seconds from 1970-01-01T0:0:0Z
as measured in UTC until the date/time.

●​ iss Issuer Identifier for the Issuer of the response. The iss value is a case sensitive
URL using the https scheme that contains scheme, host, and optionally, port number and
path components and no query or fragment components. This value will always be
https://accounts.rhino3d.com

●​ aud The client this ID Token is intended for. It contains the OAuth 2.0 id of the client
who requested the token.

●​ auth_time Last time active user authentication occurred. Its value is a JSON number
representing the number of seconds from 1970-01-01T0:0:0Z as measured in UTC until
the date/time.

https://accounts.rhino3d.com/oauth2/
https://accounts.rhino3d.com/oauth2/
https://tools.ietf.org/html/rfc6749
http://openid.net/specs/openid-connect-core-1_0.html#IDTokenValidation

●​ sub Subject Identifier. A locally unique and never reassigned identifier within Rhino
Accounts for the user, which is intended to be consumed by the Client. This value is
always a string.

The following claims may also be present (not comprehensive):

●​ nonce String value used to associate a Client session with an ID Token, and to mitigate
replay attacks. The value is passed through unmodified from the Authentication Request
to the ID Token. This value is guaranteed to appear when you specify a nonce in the
request.

●​ at_hash Access Token hash value. Its value is the base64url encoding of the left-most
half of the hash of the octets of the ASCII representation of the access_token value,
where the hash algorithm used is the hash algorithm used in the alg Header Parameter
of the ID Token's JOSE Header. For instance, if the alg is RS256, hash the
access_token value with SHA-256, then take the left-most 128 bits and base64url
encode them. This value is guaranteed to appear if an ID token is issued together with
an access token.

●​ email The primary email of the user. Present when email is part of the scope.
●​ email_verified A boolean specifying whether or not Rhino Accounts has verified

the email address. Present when email is part of the scope.
●​ phone_number The phone number of the user. Rhino Accounts will validate all phone

numbers and return them in E.164 format for international communication. Present when
phone is part of the scope.

●​ phone_number_verified A boolean specifying whether or not Rhino Accounts has
verified the phone number. Present when phone is part of the scope.

●​ name The name of the user. Present when profile is part of the scope.
●​ address A dictionary representing the address of the user. The granularity of this claim

is not guaranteed. Present when address is part of the scope.
●​ locale The locale of the user (using ISO standards, i.e. en-US or es-CO). Present

when profile is part of the scope.
●​ picture The URL of the user's profile picture. Present when profile is part of the

scope.

JSON Web Key Set

The public key that corresponds to the private key used to encode the ID token is available at
https://accounts.rhino3d.com/oauth2/keys. This is also known as the “jwks_uri”.

Using the UserInfo endpoint

Rhino Accounts provides a userinfo endpoint that adheres to OpenID Connect standards (but
can be used with a plain access token as well). This endpoint is a protected resource that can
be accessed using an OAuth2.0 access token issued by Rhino Accounts. It provides information
about an end user in JSON form that would normally be issued as “claims” in an OpenID

https://accounts.rhino3d.com/oauth2/keys

Connect token. Note that the information returned depends on the scope of the access token
provided.

To access the endpoint, make a GET request to
https://accounts.rhino3d.com/oauth2/userinfo with Bearer Authentication. The
Authorization header must have the access token as shown in the example below.

An example request:
GET
Authorization: Bearer ACCESS_TOKEN_HERE
https://accounts.rhino3d.com/oauth2/userinfo

An example response:
{"email": "marley_the_dog@mcneel.com",
 "name": "Marley",
 "locale": "en-gb"
}

The response will have a status code of 200 if successful, or a status code equal or greater to
400 if there was a problem, along with an error message as defined in RFC 6749.

Using the GroupInfo endpoint

Rhino Accounts provides a groupinfo endpoint that obtains information about a group in the
system. This endpoint is a protected resource that can be accessed using an OAuth2.0 access
token issued by Rhino Accounts. Note that the access token used MUST have the scope
groups for a successful response.

To access the endpoint, make a GET request to
https://accounts.rhino3d.com/oauth2/groupinfo with Bearer Authentication. The
Authorization header must have the access token as shown in the example below.

An example request:
GET
Authorization: Bearer ACCESS_TOKEN_HERE
https://accounts.rhino3d.com/oauth2/groupinfo?group_id=GROUP_ID_HERE

An example response:
{
 "description": "Marley’s Favorite Team",
 "creationDate": "2017-06-09T21:00:29.566Z",
 "id": "5677643768791040",
 "name": "McNeel"

https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750

}

The response will have a status code of 200 if successful, or a status code equal or greater to
400 if there was a problem, along with an error message as defined in RFC 6749.

Using the MemberInfo endpoint

Rhino Accounts provides a memberinfo endpoint that obtains information about a group’s
members in the system. This endpoint is a protected resource that can be accessed using an
OAuth2.0 access token issued by Rhino Accounts. Note that the access token used MUST have
the scope groups for a successful response.

To access the endpoint, make a GET request to
https://accounts.rhino3d.com/oauth2/memberinfo with Bearer Authentication. The
Authorization header must have the access token as shown in the example below.

An example request:
GET
Authorization: Bearer ACCESS_TOKEN_HERE
https://accounts.rhino3d.com/oauth2/memberinfo?group_id=GROUP_ID_HERE

An example response:
[
 {
 "picture": "https://urltopic.com/image.png",
 "role": "owner",
 "sub": "6740179150700544",
 "name": "Marley The Dog",
 "email": "marley@mcneel.com"
 },
 {
 "picture": "https://urltopic.com/image.png",
 "role": "member",
 "sub": "6754232283693056",
 "name": "Andrés Jacobo",
 "email": "aj@mcneel.com"
 }
]

The response will have a status code of 200 if successful, or a status code equal or greater to
400 if there was a problem, along with an error message as defined in RFC 6749.

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6749

Available Grants (Scopes)

The following grants can be requested using the scope parameter:

openid Required for any authentication flow. Allows clients to see the user’s
unique ID.

email Allows clients to see all email addresses for a user.

profile Allows clients to get basic profile information such as the user’s name
and profile picture.

phone Allows clients to see the user’s phone number.

address Allows clients to see the user’s location.

groups Allows clients to see the user’s groups and their members.

noexpire Issues a token that will never expire (But that can be revoked at any
time by a user or the client).

RFC6749 security considerations implemented by Rhino Accounts

The following is a brief description of how Rhino Accounts meets all security criteria considered
a MUST as described in Section 10 of RFC 6749. Items considered as SHOULD or SHOULD NOT
are sometimes covered in this list when it is of particular interest. Client and user agent
requirements are not mentioned on this list. Purely optional features (i.e. features labeled as
OPTIONAL or MAY). for the provider are not generally covered here. Note that the client also
plays an equally important role in ensuring the security criteria is met. Even if the user agent
and Rhino Accounts comply with every requirement, the client can compromise the security of
the protocol through a faulty implementation.

10.1. Client Authentication

●​ The authorization server MUST NOT issue client passwords or other client credentials to
native application or user-agent-based application clients for the purpose of client
authentication. ​
Rhino Accounts distinguishes between confidential clients and non-confidential clients,
and does not allow non-confidential clients to hold credentials nor does it allow them to
perform confidential-only flows (such as the Authorization Code flow).​

●​ When client authentication is not possible, the authorization server SHOULD employ
other means to validate the client's identity -- for example, by requiring the registration of
the client redirection URI...​

http://tools.ietf.org/html/rfc6749#section-10

Rhino Accounts requires that any client, be it confidential or not, registers their
redirection URIs. For every single type of flow, the redirection URIs are sanitized and
checked byte for byte to make sure they match the registered URIs. For convenience,
clients are allowed to specify multiple URIs, but partial URIs are never allowed.

10.2. Client Impersonation

●​ The authorization server MUST authenticate the client whenever possible. If the
authorization server cannot authenticate the client due to the client's nature, the
authorization server MUST require the registration of any redirection URI used for
receiving authorization responses​
Rhino Accounts requires that any client, be it confidential or not, registers their
redirection URIs. When a client is confidential, Rhino Accounts always requires them to
authenticate with their credentials over TLS. The authentication happens through an
HTTP header (Basic Authentication), minimizing the chance that any credentials are
ever logged on either the client or the server.

10.3. Access Tokens

●​ Access token credentials (as well as any confidential access token attributes) MUST be
kept confidential in transit and storage…​
Rhino Accounts never writes the actual token value to a persistent store, but rather
keeps a hash of the token that’s processed through a secure one-way function. The
entropy of the token and the hash guarantee that even if the persistent store is
compromised, no known intruder could retrieve the token values within a reasonable
amount of time.

●​ Access token credentials MUST only be transmitted using TLS​

Rhino Accounts requires that all communication with the server be through HTTPS. It
also requires that all outgoing communication is conducted in HTTPS, with the sole
exception of addresses whose top level domain is localhost. The reasoning for this is
to allow client applications residing in the user’s machine to conveniently handle tokens
to provide a better user experience. Rhino Accounts is thus assuming that the user
agent and the user’s device is not compromised, for it if where, many other vectors of
attack could be implemented.

●​ The authorization server MUST ensure that access tokens cannot be generated,

modified, or guessed to produce valid access tokens by unauthorized parties.​
Rhino Accounts uses an industry standard random number generator to generate
credentials with very high entropy.

10.4. Refresh Tokens

Refresh tokens are not currently supported by Rhino Accounts as of August 2015.

10.5. Authorization Codes

●​ Authorization codes MUST be short lived and single-use. If the authorization server
observes multiple attempts to exchange an authorization code for an access token, the
authorization server SHOULD attempt to revoke all access tokens already granted
based on the compromised authorization code.​
Authorization codes have a very limited lifetime in Rhino Accounts. Currently, Rhino
Accounts does not attempt to revoke previously issued access tokens. However, it has
thread-safe mechanisms for ensuring that an authorization code is only redeemed at
most a single time. Further attempts to redeem an authorization code will result in an
error.

●​ If the client can be authenticated, the authorization servers MUST authenticate the client

and ensure that the authorization code was issued to the same client.​
Rhino Accounts forces confidential clients to authenticate when redeeming an
authorization code. Rhino Accounts is also aware to whom the code originally issued,
and thus enforces that it can only be redeemed by the client who requested it.

10.6. Authorization Code Redirection URI Manipulation

●​ The authorization server MUST ensure that the redirection URI used to obtain the
authorization code is identical to the redirection URI provided when exchanging the
authorization code for an access token.​
Rhino Accounts keeps track of the redirection URI and enforces this constraint.

●​ The authorization server MUST require public clients and SHOULD require confidential

clients to register their redirection URIs.
​ Rhino Accounts requires all clients to register their redirection URIs.

10.7. Resource Owner Password Credentials

Due to security implications, Rhino Accounts does not implement this flow.

10.8. Request Confidentiality

●​ Access tokens, refresh tokens, resource owner passwords, and client credentials MUST
NOT be transmitted in the clear. Authorization codes SHOULD NOT be transmitted in
the clear.​
Rhino Accounts requires that all communications to the server be performed with TLS.
All the browsers that Rhino Accounts supports will warn the user of non-verifiable TLS
connections. Authorization codes are always sent through HTTPS.

10.9. Ensuring Endpoint Authenticity

●​ In order to prevent man-in-the-middle attacks, the authorization server MUST require the
use of TLS with server authentication as defined by [RFC2818] for any request sent to
the authorization and token endpoints.​
Rhino Accounts requires that all communications to the server be performed with TLS.

10.10. Credentials-Guessing Attacks

●​ The probability of an attacker guessing generated tokens (and other credentials not
intended for handling by end-users) MUST be less than or equal to 2^(-128) and
SHOULD be less than or equal to 2^(-160).​
The probability for guessing any credential generated by Rhino Accounts (with the
notable exception of user credentials), is well under the recommended 2^(-160)
threshold. Rhino Accounts is designed with a centralized user credentials criteria that
can be changed at any time to reduce the probability of guessing a user’s password.
Several other techniques for protecting user credentials have been taken as a
precaution, but they are beyond the scope of this document.​

10.11. Phishing Attacks

●​ To reduce the risk of phishing attacks, the authorization servers MUST require the use of
TLS on every endpoint used for end-user interaction.​
As stated before, TLS is implemented and enforced system wide. The user portal is only
accessible through HTTPS. Most user agents supported by Rhino Accounts have built-in
phishing filters; this acts as a first line of defense for Rhino Accounts. Rhino Accounts
also implements additional heuristics to inform and prevent the user from falling for a
phishing attack.

10.12. Cross-Site Request Forgery

●​ The authorization server MUST implement CSRF protection for its authorization endpoint
and ensure that a malicious client cannot obtain authorization without the awareness
and explicit consent of the resource owner.​
Sophisticated CSRF protection is implemented by Rhino Accounts to prevent CSRF
attacks that enforces every action in Rhino Accounts–whether it is logging in, out, or
providing consent–to be performed explicitly by the user. There is one notable exception
allowed by Rhino Accounts: Issuing a token to a registered client that already has a valid
token whose scope is a superset of the scope they are requesting. This is done to
prevent the user from consenting every single time for the same permissions in case the
client does not (or cannot) store access tokens. Although there are security implications,
I decided the pros outweighed the cons.

http://tools.ietf.org/html/rfc2818

10.13. Clickjacking

To prevent this form of attack, native applications SHOULD use external browsers instead of
embedding browsers within the application when requesting end-user authorization.
Rhino Accounts employs the use of the x-frame-options HTTP header that is understood
by all browsers supported. This effectively prevents a browser from allowing a traditional
clickjacking attack.

10.14. Code Injection and Input Validation

The authorization server and client MUST sanitize (and validate when possible) any value
received -- in particular, the value of the "state" and "redirect_uri" parameters.
Rhino Accounts performs basic sanitation for all values passed to it, and performs strict
validation of any redirect_uri parameter passed.

10.15. Open Redirectors

Given that Rhino Accounts requires all redirection URIs to be registered, it should never be able
to operate as an open redirector.

10.16. Misuse of Access Token to Impersonate Resource Owner in Implicit Flow

There are no requirements for providers here, although any client should carefully read this
section to avoid a Confused Deputy attack.

RFC6819 security considerations implemented by Rhino Accounts

The following is a brief description of how Rhino Accounts is designed to mitigate or prevent all
threats as described in Section 4 of RFC6819 by implementing the security considerations in
section 5 of the same document. Even if the user agent and Rhino Accounts comply with every
requirement, the client can compromise the security of the protocol through a faulty
implementation.

5.1.1. Ensure Confidentiality of Requests
Rhino Accounts uses end-to-end TLS encryption for any network request between itself, the
user agent, and registered clients.

5.1.2. Utilize Server Authentication
Rhino Accounts is hosted in a server accepting only secure connections. It only supports user
agents that actively verify host certificates to prevent spoofing/illegal proxying/phishing.

5.1.3. Always Keep the Resource Owner Informed
Rhino Accounts will always ask the resource owner for consent or reject a request, except when
all of these criteria are met:

https://en.wikipedia.org/wiki/Confused_deputy_problem
http://tools.ietf.org/html/rfc6819#section-4

1.​ The request already has a record of being granted and has not expired yet
2.​ The request’s redirect_uri is not localhost
3.​ The maximum number of tokens for the particular request has not been exceeded.

5.1.4.1.1. Enforce Standard System Security Means
Rhino Accounts can be easily shut down by an administrator.

5.1.4.1.2. Enforce Standard SQL Injection Countermeasures
Rhino Accounts does not rely on SQL, and never uses concatenated input for queries (i.e.
GQL).

5.1.4.1.3. No Cleartext Storage of Credentials
Credentials are stored with the highest available security practices, and the system is designed
to be easily upgraded to a new standard should there be a need to.

5.1.4.1.4. Encryption of Credentials
Clients only.

5.1.4.1.5. Use of Asymmetric Cryptography
Asymmetric cryptography is used by Rhino Accounts for its OpenID Connect implementation, as
well as for TLS.

5.1.4.2.1. Utilize Secure Password Policy
Rhino Accounts utilizes a basic entropy calculation function to decide whether a user’s
password meets the minimum requirements. It also aims to educate and encourage users to
choose a strong password.

5.1.4.2.2. Use High Entropy for Secrets
Rhino Accounts uses a level of entropy that far exceeds the recommended requirements, and
uses an industry-standard pRNG for generating secrets.

5.1.4.2.3. Lock Accounts
Rhino Accounts uses sophisticated calculus-based heuristics to lock accounts when a threat is
detected.

5.1.4.2.4. Use Tar Pit
See 5.1.4.2.3.

5.1.4.2.5. Use CAPTCHAs
As stated in the document, CAPTCHAs are not used in Rhino Accounts because they add
accessibility issues, and a determined attacker can learn (or already has learned) how to
bypass them completely.

5.1.5.1. Limit Token Scope
Currently Rhino Accounts has no provisions for limiting a token’s scope.

5.1.5.2. Determine Expiration Time
Rhino Accounts uses a short token expiration time by default to mitigate the effects of token
leakage. However, for convenience, Rhino Accounts allows users to choose a specific token
duration to prevent frequently having to give consent.

5.1.5.3. Use Short Expiration Time
See 5.1.5.2

5.1.5.4. Limit Number of Usages or One-Time Usage
Rhino Accounts strongly enforces that Authorization codes be redeemed only once. After the
first attempt, any subsequent attempt will fail. Currently Rhino Accounts does not invalidate the
first token that was successfully issued.

5.1.5.5. Bind Tokens to a Particular Resource Server (Audience)
Given the relatively small scope of Rhino Accounts, no such implementations are done, since
the implementation wouldn’t yield a substantial improvement in security but it would add
considerable complexity.

5.1.5.6. Use Endpoint Address as Token Audience
Since redirect_uris must be registered, this measure is not currently implemented by Rhino
Accounts.

5.1.5.7. Use Explicitly Defined Scopes for Audience and Tokens
Rhino Accounts includes a provision for namespacing token scopes that can be used by
authorization servers to mitigate attacks against multiple servers with a single token.

5.1.5.8. Bind Token to Client id
Tokens are issued to a specific client, and Rhino Accounts remembers this binding through the
lifetime of the token.

5.1.5.9. Sign Self-Contained Tokens
#INCOMPLETE

5.1.5.10. Encrypt Token Content
#INCOMPLETE

5.1.5.11. Adopt a Standard Assertion Format
JWT is used for Rhino Accounts’s OpenID Connect implementation.

5.1.6. Access Tokens

Rhino Accounts mandates that all access tokens sent to or from itself are encrypted using TLS.

5.2.1.1. Automatic Revocation of Derived Tokens If Abuse Is Detected
This is currently not implemented due to complexity.

5.2.2. Refresh Tokens
Refresh tokens are not currently supported by Rhino Accounts.

5.2.3.1. Don't Issue Secrets to Clients with Inappropriate Security Policy
Rhino Accounts does not prevent non-confidential clients from using a secret. The responsibility
of keeping the secret safe is delegated to the client.

5.2.3.2. Require User Consent for Public Clients without Secret
If a client is impersonated, Rhino Accounts relies on TLS verification by the user agent to alert
the user of fraud. There are two exceptions where this safeguard does not work: when the
redirect uri is http://localhost, and when the attacker has managed to also steal or forge the TLS
certificate of the client. To mitigate this risk, Rhino Accounts keeps a limit of tokens issued to a
particular client for a particular user. When this limit is exceeded, the oldest token issued is
silently revoked without warning.

5.2.3.3. Issue a "client_id" Only in Combination with "redirect_uri"
Rhino Accounts requires clients–public or confidential–to pre-register their redirect-uris.

5.2.3.4. Issue Installation-Specific Client Secrets
Rhino Accounts does not provide such provisions. However, an application could theoretically
register multiple clients in Rhino Accounts with different secrets and achieve a similar result.

5.2.3.5. Validate Pre-Registered "redirect_uri"
Rhino Accounts mandates that redirect_uris specified match exactly, character for character.

5.2.3.6. Revoke Client Secrets
Rhino Accounts allows a client’s secret to be modified at any time. Rhino Accounts also makes
it possible to find and revoke all access tokens that were granted to a specific client.

5.2.3.7. Use Strong Client Authentication (e.g., client_assertion/client_token)
Rhino Accounts does not implement this measure currently due to complexity.

5.2.4.1. Automatic Processing of Repeated Authorizations Requires Client Validation
See 5.1.3

5.2.4.2. Informed Decisions Based on Transparency
Rhino Accounts aims to provide localized descriptions of the scope of a request to the user.

http://localhost

5.2.4.3. Validation of Client Properties by End User
Rhino Accounts includes the application’s name in the consent screen.

5.2.4.4. Binding of Authorization "code" to "client_id"
Rhino Accounts remembers which client was issued which authorization code through the
lifetime of the code.

5.2.4.5. Binding of Authorization "code" to "redirect_uri"
Rhino Accounts remembers which redirect_uri was specified for an authorization code through
the lifetime of the code.

5.3. Client App Security
There are no requirements for providers here, although any client should carefully read this
section.

5.4. Resource Servers
There are no requirements for providers here, although resource servers carefully read this
section.

5.5. A Word on User Interaction and User-Installed Apps
Rhino Accounts is built with the best intentions; But as this section proves, there will always be
a way for a determined attacker to cause theft or damage; Rhino Accounts aims to mitigate
these by implementing all reasonable security considerations.

	Rhino Accounts Overview
	Table of Contents
	About Rhino Accounts
	What is Rhino Accounts?
	What is Rhino Accounts based on?
	Authentication vs Authorization
	A note about security.
	User Agent Requirements.
	Supported Browsers:

	Client Registration

	Using Rhino Accounts for Authorization as a Client
	Overview
	WARNING: Do not use any of the two authorization flows for authentication. Instead, see Using Rhino Accounts for Authentication as a Client

	Using the Authorization Code flow:
	Preparing to start the flow:
	Requesting a token
	
	Exchanging an authorization code for a token
	Revoking a valid access token

	Using the Implicit flow:
	Requesting a token
	
	Handling the token response
	Revoking a valid access token

	Using Rhino Accounts for Authorization as a Resource Server
	Overview
	Validating an access token

	Using Rhino Accounts for Authentication as a Client
	Using the Authorization Code flow:
	Using the Implicit flow:
	Using the id_token only flow:

	Appendix
	Revoking an access token programmatically
	OpenID Connect Tokens
	RFC6749 security considerations implemented by Rhino Accounts
	RFC6819 security considerations implemented by Rhino Accounts
	Revoking an access token programmatically
	OpenID Connect Tokens
	JSON Web Key Set
	Using the UserInfo endpoint
	Using the GroupInfo endpoint
	Using the MemberInfo endpoint
	Available Grants (Scopes)
	RFC6749 security considerations implemented by Rhino Accounts
	10.1. Client Authentication
	10.2. Client Impersonation
	10.3. Access Tokens
	10.4. Refresh Tokens
	10.5. Authorization Codes
	10.6. Authorization Code Redirection URI Manipulation
	10.7. Resource Owner Password Credentials
	10.8. Request Confidentiality
	10.9. Ensuring Endpoint Authenticity
	10.10. Credentials-Guessing Attacks
	10.11. Phishing Attacks
	10.12. Cross-Site Request Forgery
	10.13. Clickjacking
	10.14. Code Injection and Input Validation
	10.15. Open Redirectors
	10.16. Misuse of Access Token to Impersonate Resource Owner in Implicit Flow

	RFC6819 security considerations implemented by Rhino Accounts

