
Proposal: Enhancing SBOannotator with LLM
Integration & Dynamic Term Retrieval

Personal Information

Name: Jiahui Hu​
Email: hu.jiahu@northeastern.edu​
Alternative Email: lareinahuwork@gmail.com​
GitHub:https://github.com/lareinahu-2023​
University: Northeastern University, Master's in Computer Software Engineering​
Prior Contribution: https://github.com/draeger-lab/SBOannotator/pull/2​

Project Synopsis

This proposal aims to transform SBOannotator from a static, hard-coded tool into a dynamic,
intelligent system for annotating SBML models with Systems Biology Ontology terms.After
initial discussions with mentor Nantia Leonidou, who provided valuable feedback on my
approach, I've developed a comprehensive plan and initial implementation (PR #2
https://github.com/draeger-lab/SBOannotator/pull/2).

By implementing real-time SBO term retrieval, integrating multiple enzymatic data sources,
and incorporating LLM-based annotation assistance, this project will significantly enhance
both the accuracy and usability of SBOannotator while maintaining its core classification
strengths. The addition of a standalone desktop GUI with interactive visualizations will make
these powerful annotation capabilities accessible to a broader range of systems biology
researchers.​
​
Project Link: https://github.com/nrnb/GoogleSummerOfCode/issues/261

Potential Mentor: Nantia Leonidou - nantia.leonidou@dkfz-heidelberg.de​

Project Description

Background

https://github.com/lareinahu-2023
https://github.com/draeger-lab/SBOannotator/pull/2
mailto:nantia.leonidou@dkfz-heidelberg.de
https://github.com/draeger-lab/SBOannotator/pull/2
https://github.com/draeger-lab/SBOannotator/pull/2
https://github.com/nrnb/GoogleSummerOfCode/issues/261
mailto:nantia.leonidou@dkfz-heidelberg.de

SBOannotator is the first standalone tool that automatically assigns Systems Biology
Ontology (SBO) terms to multiple entities of a given SBML (Systems Biology Markup
Language) model. Its main strength lies in annotating biochemical reactions within metabolic
models, as the correct assignment of precise SBO annotations requires extensive
classification. SBO terms play a crucial role in precisely defining the functions of various
components within biological models. By assigning these terms, the interpretability and
overall understanding of the model are significantly improved.

However, in large-scale models containing thousands of reactions and chemical species,
manually assigning SBO terms becomes a highly complex and time-consuming task.
Currently, SBOannotator assigns terms that are hard-coded, making it unable to integrate
newly introduced ontologies. Additionally, it derives enzymatic information needed for the
correct classification of reactions from the BiGG database or a predefined static SQL
database.

Problem Statement

The current SBOannotator has three key limitations:

1.​ Static SBO Terms: Hard-coded terms prevent the integration of newly introduced
ontologies from the OLS server.

2.​ Limited Data Sources: Reliance on BiGG database restricts access to comprehensive
enzymatic information.

3.​ Complex User Experience: The lack of an intuitive interface and visualization tools
limits accessibility.

Project Goals

1.​ Develop a dynamic system to automatically fetch and update SBO terms from the
OLS server

2.​ Expand enzymatic data integration to include KEGG and BRENDA databases
3.​ Implement an on-premise LLM-based annotation assistant to intelligently suggest

SBO terms
4.​ Create interactive visualizations for reaction networks and annotation statistics
5.​ Build a standalone desktop GUI with an intuitive user interface

Benefits to the Community

This project will benefit the systems biology community by:

●​ Improving Annotation Accuracy: Access to up-to-date SBO terms and multiple
enzymatic data sources will enable more precise annotations.

●​ Enhancing Efficiency: LLM-based suggestions and an intuitive GUI will significantly
reduce the time required for annotation.

●​ Expanding Accessibility: The standalone application will make advanced annotation
capabilities available to researchers with varying technical expertise.

●​ Facilitating Model Comparison: Visualization tools will allow for better
understanding and comparison of model components.

●​ Ensuring Sustainability: Dynamic term retrieval will future-proof the tool against
ontology changes.

Initial Implementation Progress

1. Description of What I Have Accomplished:

 I've already laid the groundwork for integrating LLM capabilities into SBOannotator by
creating the essential foundation components, as demonstrated in my PR #2:
https://github.com/draeger-lab/SBOannotator/pull/2.

My initial implementation includes:

 1. Comprehensive Implementation Plan (LLM_ANNOTATION_PLAN.md):
 - Defined a clear five-phase implementation strategy
 - Created detailed architectural diagram showing component relationships
 - Outlined specific technical approaches for reaction feature extraction
 - Developed prompt engineering strategies for biochemical classification
 - Established evaluation metrics for assessing annotation quality
 2. Modular LLM Provider Interface (llm_interface.py):
 - Built abstract base class for provider-agnostic LLM integration
 - Implemented provider-specific classes for OpenAI and Anthropic
 - Created reaction feature extraction framework with placeholder methods
 - Designed SBOAnnotationAssistant class to orchestrate the annotation process
 - Developed methods for batch processing entire SBML models
 3. Template Management System (template_manager.py):
 - Created a Jinja2-based template engine for dynamic prompt generation
 - Implemented reaction-specific template selection logic
 - Developed four specialized templates for different reaction types:
 - General biochemical reactions
 - Transport reactions
 - Enzymatic reactions
 - Exchange/boundary reactions
 - Built template caching system for improved performance

These components establish a solid architectural foundation for the LLM integration,
following software engineering best practices including:
 - Clear separation of concerns
 - Extensible interfaces
 - Comprehensive documentation
 - Type hints throughout the codebase

https://github.com/draeger-lab/SBOannotator/pull/2

2. ScreenShots of My Key Files:​

 1. LLM_ANNOTATION_PLAN.md​

​

 2. llm_interface.py - Next show the core interface implementation

 3. template_manager.py - Finally show the template system

​
Technical Implementation

1. Dynamic SBO Term Retrieval System

●​ Implement Python API client using the requests library to fetch SBO terms from OLS
server

●​ Develop SQLite-based caching mechanism for offline access with automatic update
checking at startup

●​ Create differential update system to minimize bandwidth and processing overhead
●​ Implement local cache fallback for reliability when server access is unavailable

2. Enzymatic Data Integration Framework

●​ Build modular data provider system using the factory pattern for extensibility
●​ Develop adapters for KEGG and BRENDA databases
●​ Implement unified query interface via adapter pattern to standardize data access
●​ Create data normalization layer to resolve inconsistencies between sources

3. LLM-based Annotation Assistant

●​ Integrate pre-trained DistilBERT model (distilbert-base-uncased) using Hugging Face's
Transformers library

●​ Fine-tune on a dataset of manually annotated SBML models provided by the mentor
team

●​ Implement confidence scoring system for annotation suggestions
●​ Provide dual modes: automatic application of high-confidence suggestions and user

selection from multiple options

4. Visualization Component

●​ Implement interactive reaction network visualization using Plotly and NetworkX
●​ Develop before/after annotation comparison views
●​ Create coverage analysis dashboard for model quality assessment

5. Standalone Desktop GUI

●​ Develop cross-platform application using PyQt6
●​ Design tabbed interface with drag-and-drop functionality
●​ Create annotation review interface with filtering capabilities

Detailed Technical Approach

LLM Implementation Details

I will implement the annotation assistant using DistilBERT (distilbert-base-uncased), a
lightweight yet powerful language model that balances performance with resource
requirements. Key implementation details include:

1.​ Training Data:​

○​ Use a corpus of 20-30 manually annotated SBML models (to be provided by
mentor)

○​ Supplement with existing SBO term definitions and relationships

○​ Implement data augmentation techniques to enhance training set size
2.​ Fine-tuning Approach:​

○​ Focus on text classification rather than full model retraining
○​ Use a sequence classification head on top of DistilBERT
○​ Train on a modest-sized GPU (e.g., Google Colab or university resources)

3.​ Resource Management:​

○​ Implement model quantization to reduce memory footprint
○​ Use gradient accumulation to enable training with limited GPU memory
○​ Cache inference results to improve runtime performance

4.​ Fallback Strategy:​

○​ If fine-tuning proves too resource-intensive, implement a simpler semantic
matching approach using pre-trained embeddings

○​ Use cosine similarity between SBO term descriptions and reaction
characteristics

Testing Methodology

I will implement a comprehensive testing approach using:

1.​ Test Data:​

○​ Cross-validation set of 5-10 manually annotated SBML models (separate from
training data)

○​ Synthetic test cases for edge-case handling
○​ Large-scale models to test performance and scalability

2.​ Validation Metrics:​

○​ Precision, recall, and F1 score for annotation accuracy
○​ Coverage percentage of model elements
○​ Processing time for various model sizes
○​ User satisfaction metrics from beta testers

3.​ Continuous Testing:​

○​ Unit tests for each component
○​ Integration tests for the complete workflow
○​ UI testing for the desktop application

Risk Assessment and Mitigation

Risk Probability Impact Mitigation Strategy

LLM training requires
excessive resources

Medium High Use smaller pre-trained models;
implement simpler semantic
matching as fallback

OLS API integration is more
complex than anticipated

Low Medium Focus on core term retrieval first;
implement incremental features

Integration of multiple
enzymatic databases creates
conflicting data

Medium Medium Develop robust normalization rules;
provide clear conflict resolution UI

GUI development exceeds
time allocation

Medium Medium Start with minimal viable UI and
enhance incrementally; prioritize
functionality over aesthetics

Poor performance with
large-scale models

Low High Implement lazy loading and
processing; optimize critical path
algorithms

Implementation Timeline (12 Weeks)

Community Bonding Period (2 weeks before official start)

●​ Set up development environment and communication channels
●​ Review existing codebase in detail
●​ Collect and analyze test SBML models
●​ Define API specifications in collaboration with mentor

Week 1-2: Dynamic SBO Term Retrieval System

●​ Implement Python API client for OLS server
●​ Develop SQLite caching mechanism
●​ Create automatic update checker
●​ Milestone: Working term retrieval with caching

Week 3-4: Enzymatic Data Integration Framework

●​ Build modular data provider architecture
●​ Implement KEGG database adapter
●​ Develop BRENDA database adapter
●​ Milestone: Integrated enzymatic data retrieval
●​ Mentor Checkpoint: Review data integration approach and results

Week 5-6: LLM-based Annotation Assistant (Phase 1)

●​ Set up Hugging Face Transformers integration
●​ Prepare training data with mentor assistance
●​ Implement model training pipeline
●​ Milestone: Initial LLM model with basic prediction capability
●​ Mentor Checkpoint: Evaluate initial model performance

Week 7-8: LLM-based Annotation Assistant (Phase 2) & Visualization

●​ Refine model based on mentor feedback
●​ Implement confidence scoring system
●​ Create basic reaction network visualization
●​ Milestone: Working LLM suggestion system with visualization
●​ Mentor Checkpoint: Review annotation accuracy and visualization

Week 9-10: Standalone Desktop GUI

●​ Develop cross-platform application shell
●​ Implement tabbed interface
●​ Create annotation review interface
●​ Milestone: Functional GUI with core features
●​ Mentor Checkpoint: Usability review and feedback

Week 11-12: Integration, Testing & Documentation

●​ Integrate all components
●​ Implement comprehensive testing
●​ Create user documentation
●​ Fix bugs and optimize performance
●​ Final Milestone: Complete working application
●​ Final Mentor Review: Comprehensive project evaluation

Mentor Collaboration Plan

I plan to maintain regular communication with my mentor throughout the project:

●​ Weekly Progress Reports: Brief written updates on completed tasks and current
challenges

●​ Bi-weekly Video Meetings: Detailed discussion of progress, demonstrations, and
technical guidance

●​ Code Review Process: Submit PRs for each completed component for mentor review
●​ Critical Decision Points: Specific checkpoints (noted in timeline) where mentor input

is crucial for next steps

Contingency Planning

If time constraints become an issue, I will prioritize features in this order:

1.​ Core Functionality:​

○​ Dynamic SBO term retrieval (highest priority)
○​ Basic enzymatic data integration
○​ Simple GUI for accessibility

2.​ Enhanced Features:​

○​ Advanced LLM integration
○​ Multiple data source integration
○​ Comprehensive visualization

If the LLM component proves particularly challenging, I will implement a simplified version
using pre-trained embeddings and semantic matching rather than full model fine-tuning.

Deliverables

Required Deliverables (Will Definitely Complete)

1.​ Dynamic SBO term retrieval system with caching mechanism
2.​ KEGG and BRENDA database adapters for enzymatic data
3.​ Basic standalone GUI application
4.​ Comprehensive documentation and tests

Stretch Deliverables (Will Complete If Time Permits)

1.​ Advanced LLM-based annotation with high-confidence prediction
2.​ Interactive visualization dashboard
3.​ Performance optimizations for large-scale models
4.​ Video tutorials and demonstrations

Qualifications

As a Master's student in Computer Software Engineering at Northeastern University, I bring
relevant expertise to this project:

●​ Proven Contribution to SBOannotator: I've already submitted a functional PR (#2:
https://github.com/draeger-lab/SBOannotator/pull/2) implementing the LLM
integration foundation

●​ Experience in NLP system development with fuzzy matching techniques
●​ Proficiency in API integration and distributed data processing
●​ UI development skills with PyQt
●​ Coursework in "Theory & Practice of AI Gen Model" providing insights into effective

LLM implementation
●​ Strong Python programming skills with experience in scientific computing libraries

Related Work

My proposed enhancements build upon existing work in systems biology annotation tools
while addressing specific gaps:

●​ Existing SBO term annotation tools lack dynamic updating and intelligent suggestions

https://github.com/draeger-lab/SBOannotator/pull/2

●​ Current SBML editors provide limited visualization capabilities for annotation
coverage

●​ Few tools integrate multiple enzymatic data sources for comprehensive annotation

Conclusion

This project represents a significant advancement for SBOannotator, transforming it from a
tool with static, hard-coded functionality into a dynamic, intelligent system capable of
adapting to evolving ontologies and leveraging multiple data sources. I am committed to
delivering a realistic, well-tested implementation that maintains SBOannotator's core
classification strengths while addressing its current limitations, with clear prioritization and
contingency plans to ensure successful completion within the GSoC timeframe.

	Proposal: Enhancing SBOannotator with LLM Integration & Dynamic Term Retrieval
	Personal Information
	Project Synopsis
	Project Description
	Background
	Problem Statement
	Project Goals
	Benefits to the Community
	Initial Implementation Progress
	1. Description of What I Have Accomplished:
	
	
	2. ScreenShots of My Key Files:​
	 1. LLM_ANNOTATION_PLAN.md​
	 2. llm_interface.py - Next show the core interface implementation
	 3. template_manager.py - Finally show the template system

	​Technical Implementation
	1. Dynamic SBO Term Retrieval System
	2. Enzymatic Data Integration Framework
	3. LLM-based Annotation Assistant
	4. Visualization Component
	5. Standalone Desktop GUI

	Detailed Technical Approach
	LLM Implementation Details
	Testing Methodology

	Risk Assessment and Mitigation
	Implementation Timeline (12 Weeks)
	Community Bonding Period (2 weeks before official start)
	Week 1-2: Dynamic SBO Term Retrieval System
	Week 3-4: Enzymatic Data Integration Framework
	Week 5-6: LLM-based Annotation Assistant (Phase 1)
	Week 7-8: LLM-based Annotation Assistant (Phase 2) & Visualization
	Week 9-10: Standalone Desktop GUI
	Week 11-12: Integration, Testing & Documentation

	Mentor Collaboration Plan
	Contingency Planning
	Deliverables
	Required Deliverables (Will Definitely Complete)
	Stretch Deliverables (Will Complete If Time Permits)

	Qualifications
	Related Work
	Conclusion

