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Project Synopsis 
 

This proposal aims to transform SBOannotator from a static, hard-coded tool into a dynamic, 
intelligent system for annotating SBML models with Systems Biology Ontology terms.After 
initial discussions with mentor Nantia Leonidou, who provided valuable feedback on my 
approach, I've developed a comprehensive plan and initial implementation (PR #2 
https://github.com/draeger-lab/SBOannotator/pull/2).  

By implementing real-time SBO term retrieval, integrating multiple enzymatic data sources, 
and incorporating LLM-based annotation assistance, this project will significantly enhance 
both the accuracy and usability of SBOannotator while maintaining its core classification 
strengths. The addition of a standalone desktop GUI with interactive visualizations will make 
these powerful annotation capabilities accessible to a broader range of systems biology 
researchers.​
​
Project Link: https://github.com/nrnb/GoogleSummerOfCode/issues/261 

Potential Mentor: Nantia Leonidou - nantia.leonidou@dkfz-heidelberg.de​
 

Project Description 
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SBOannotator is the first standalone tool that automatically assigns Systems Biology 
Ontology (SBO) terms to multiple entities of a given SBML (Systems Biology Markup 
Language) model. Its main strength lies in annotating biochemical reactions within metabolic 
models, as the correct assignment of precise SBO annotations requires extensive 
classification. SBO terms play a crucial role in precisely defining the functions of various 
components within biological models. By assigning these terms, the interpretability and 
overall understanding of the model are significantly improved. 

However, in large-scale models containing thousands of reactions and chemical species, 
manually assigning SBO terms becomes a highly complex and time-consuming task. 
Currently, SBOannotator assigns terms that are hard-coded, making it unable to integrate 
newly introduced ontologies. Additionally, it derives enzymatic information needed for the 
correct classification of reactions from the BiGG database or a predefined static SQL 
database. 

Problem Statement 

The current SBOannotator has three key limitations: 

1.​ Static SBO Terms: Hard-coded terms prevent the integration of newly introduced 
ontologies from the OLS server. 

2.​ Limited Data Sources: Reliance on BiGG database restricts access to comprehensive 
enzymatic information. 

3.​ Complex User Experience: The lack of an intuitive interface and visualization tools 
limits accessibility. 

Project Goals 

1.​ Develop a dynamic system to automatically fetch and update SBO terms from the 
OLS server 

2.​ Expand enzymatic data integration to include KEGG and BRENDA databases 
3.​ Implement an on-premise LLM-based annotation assistant to intelligently suggest 

SBO terms 
4.​ Create interactive visualizations for reaction networks and annotation statistics 
5.​ Build a standalone desktop GUI with an intuitive user interface 

Benefits to the Community 

This project will benefit the systems biology community by: 

●​ Improving Annotation Accuracy: Access to up-to-date SBO terms and multiple 
enzymatic data sources will enable more precise annotations. 

●​ Enhancing Efficiency: LLM-based suggestions and an intuitive GUI will significantly 
reduce the time required for annotation. 

●​ Expanding Accessibility: The standalone application will make advanced annotation 
capabilities available to researchers with varying technical expertise. 

●​ Facilitating Model Comparison: Visualization tools will allow for better 
understanding and comparison of model components. 



●​ Ensuring Sustainability: Dynamic term retrieval will future-proof the tool against 
ontology changes. 

Initial Implementation Progress 

1. Description of What I Have Accomplished: 

 I've already laid the groundwork for integrating LLM capabilities into SBOannotator by 
creating the essential foundation components, as demonstrated in my PR #2: 
https://github.com/draeger-lab/SBOannotator/pull/2. 
 
My initial implementation includes: 
 
  1. Comprehensive Implementation Plan (LLM_ANNOTATION_PLAN.md): 
    - Defined a clear five-phase implementation strategy 
    - Created detailed architectural diagram showing component relationships 
    - Outlined specific technical approaches for reaction feature extraction 
    - Developed prompt engineering strategies for biochemical classification 
    - Established evaluation metrics for assessing annotation quality 
  2. Modular LLM Provider Interface (llm_interface.py): 
    - Built abstract base class for provider-agnostic LLM integration 
    - Implemented provider-specific classes for OpenAI and Anthropic 
    - Created reaction feature extraction framework with placeholder methods 
    - Designed SBOAnnotationAssistant class to orchestrate the annotation process 
    - Developed methods for batch processing entire SBML models 
  3. Template Management System (template_manager.py): 
    - Created a Jinja2-based template engine for dynamic prompt generation 
    - Implemented reaction-specific template selection logic 
    - Developed four specialized templates for different reaction types: 
        - General biochemical reactions 
      - Transport reactions 
      - Enzymatic reactions 
      - Exchange/boundary reactions 
    - Built template caching system for improved performance 
 
These components establish a solid architectural foundation for the LLM integration, 
following software engineering best practices  including: 
  - Clear separation of concerns 
  - Extensible interfaces 
  - Comprehensive documentation 
  - Type hints throughout the codebase 
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2. ScreenShots of My Key Files:​
 

 1. LLM_ANNOTATION_PLAN.md​
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 2. llm_interface.py - Next show the core interface implementation 

 
 



 

 
 



 

 



 

 



 





 
 
 

 3. template_manager.py - Finally show the template system 

 











 
 
 
 

​
Technical Implementation 

1. Dynamic SBO Term Retrieval System 



●​ Implement Python API client using the requests library to fetch SBO terms from OLS 
server 

●​ Develop SQLite-based caching mechanism for offline access with automatic update 
checking at startup 

●​ Create differential update system to minimize bandwidth and processing overhead 
●​ Implement local cache fallback for reliability when server access is unavailable 

2. Enzymatic Data Integration Framework 

●​ Build modular data provider system using the factory pattern for extensibility 
●​ Develop adapters for KEGG and BRENDA databases 
●​ Implement unified query interface via adapter pattern to standardize data access 
●​ Create data normalization layer to resolve inconsistencies between sources 

3. LLM-based Annotation Assistant 

●​ Integrate pre-trained DistilBERT model (distilbert-base-uncased) using Hugging Face's 
Transformers library 

●​ Fine-tune on a dataset of manually annotated SBML models provided by the mentor 
team 

●​ Implement confidence scoring system for annotation suggestions 
●​ Provide dual modes: automatic application of high-confidence suggestions and user 

selection from multiple options 

4. Visualization Component 

●​ Implement interactive reaction network visualization using Plotly and NetworkX 
●​ Develop before/after annotation comparison views 
●​ Create coverage analysis dashboard for model quality assessment 

5. Standalone Desktop GUI 

●​ Develop cross-platform application using PyQt6 
●​ Design tabbed interface with drag-and-drop functionality 
●​ Create annotation review interface with filtering capabilities 

Detailed Technical Approach 

LLM Implementation Details 

I will implement the annotation assistant using DistilBERT (distilbert-base-uncased), a 
lightweight yet powerful language model that balances performance with resource 
requirements. Key implementation details include: 

1.​ Training Data:​
 

○​ Use a corpus of 20-30 manually annotated SBML models (to be provided by 
mentor) 

○​ Supplement with existing SBO term definitions and relationships 



○​ Implement data augmentation techniques to enhance training set size 
2.​ Fine-tuning Approach:​

 
○​ Focus on text classification rather than full model retraining 
○​ Use a sequence classification head on top of DistilBERT 
○​ Train on a modest-sized GPU (e.g., Google Colab or university resources) 

3.​ Resource Management:​
 

○​ Implement model quantization to reduce memory footprint 
○​ Use gradient accumulation to enable training with limited GPU memory 
○​ Cache inference results to improve runtime performance 

4.​ Fallback Strategy:​
 

○​ If fine-tuning proves too resource-intensive, implement a simpler semantic 
matching approach using pre-trained embeddings 

○​ Use cosine similarity between SBO term descriptions and reaction 
characteristics 

Testing Methodology 

I will implement a comprehensive testing approach using: 

1.​ Test Data:​
 

○​ Cross-validation set of 5-10 manually annotated SBML models (separate from 
training data) 

○​ Synthetic test cases for edge-case handling 
○​ Large-scale models to test performance and scalability 

2.​ Validation Metrics:​
 

○​ Precision, recall, and F1 score for annotation accuracy 
○​ Coverage percentage of model elements 
○​ Processing time for various model sizes 
○​ User satisfaction metrics from beta testers 

3.​ Continuous Testing:​
 

○​ Unit tests for each component 
○​ Integration tests for the complete workflow 
○​ UI testing for the desktop application 

Risk Assessment and Mitigation 

Risk Probability Impact Mitigation Strategy 

LLM training requires 
excessive resources 

Medium High Use smaller pre-trained models; 
implement simpler semantic 
matching as fallback 



OLS API integration is more 
complex than anticipated 

Low Medium Focus on core term retrieval first; 
implement incremental features 

Integration of multiple 
enzymatic databases creates 
conflicting data 

Medium Medium Develop robust normalization rules; 
provide clear conflict resolution UI 

GUI development exceeds 
time allocation 

Medium Medium Start with minimal viable UI and 
enhance incrementally; prioritize 
functionality over aesthetics 

Poor performance with 
large-scale models 

Low High Implement lazy loading and 
processing; optimize critical path 
algorithms 

Implementation Timeline (12 Weeks) 

Community Bonding Period (2 weeks before official start) 

●​ Set up development environment and communication channels 
●​ Review existing codebase in detail 
●​ Collect and analyze test SBML models 
●​ Define API specifications in collaboration with mentor 

Week 1-2: Dynamic SBO Term Retrieval System 

●​ Implement Python API client for OLS server 
●​ Develop SQLite caching mechanism 
●​ Create automatic update checker 
●​ Milestone: Working term retrieval with caching 

Week 3-4: Enzymatic Data Integration Framework 

●​ Build modular data provider architecture 
●​ Implement KEGG database adapter 
●​ Develop BRENDA database adapter 
●​ Milestone: Integrated enzymatic data retrieval 
●​ Mentor Checkpoint: Review data integration approach and results 

Week 5-6: LLM-based Annotation Assistant (Phase 1) 

●​ Set up Hugging Face Transformers integration 
●​ Prepare training data with mentor assistance 
●​ Implement model training pipeline 
●​ Milestone: Initial LLM model with basic prediction capability 
●​ Mentor Checkpoint: Evaluate initial model performance 



Week 7-8: LLM-based Annotation Assistant (Phase 2) & Visualization 

●​ Refine model based on mentor feedback 
●​ Implement confidence scoring system 
●​ Create basic reaction network visualization 
●​ Milestone: Working LLM suggestion system with visualization 
●​ Mentor Checkpoint: Review annotation accuracy and visualization 

Week 9-10: Standalone Desktop GUI 

●​ Develop cross-platform application shell 
●​ Implement tabbed interface 
●​ Create annotation review interface 
●​ Milestone: Functional GUI with core features 
●​ Mentor Checkpoint: Usability review and feedback 

Week 11-12: Integration, Testing & Documentation 

●​ Integrate all components 
●​ Implement comprehensive testing 
●​ Create user documentation 
●​ Fix bugs and optimize performance 
●​ Final Milestone: Complete working application 
●​ Final Mentor Review: Comprehensive project evaluation 

Mentor Collaboration Plan 

I plan to maintain regular communication with my mentor throughout the project: 

●​ Weekly Progress Reports: Brief written updates on completed tasks and current 
challenges 

●​ Bi-weekly Video Meetings: Detailed discussion of progress, demonstrations, and 
technical guidance 

●​ Code Review Process: Submit PRs for each completed component for mentor review 
●​ Critical Decision Points: Specific checkpoints (noted in timeline) where mentor input 

is crucial for next steps 

Contingency Planning 

If time constraints become an issue, I will prioritize features in this order: 

1.​ Core Functionality:​
 

○​ Dynamic SBO term retrieval (highest priority) 
○​ Basic enzymatic data integration 
○​ Simple GUI for accessibility 



2.​ Enhanced Features:​
 

○​ Advanced LLM integration 
○​ Multiple data source integration 
○​ Comprehensive visualization 

If the LLM component proves particularly challenging, I will implement a simplified version 
using pre-trained embeddings and semantic matching rather than full model fine-tuning. 

Deliverables 

Required Deliverables (Will Definitely Complete) 

1.​ Dynamic SBO term retrieval system with caching mechanism 
2.​ KEGG and BRENDA database adapters for enzymatic data 
3.​ Basic standalone GUI application 
4.​ Comprehensive documentation and tests 

Stretch Deliverables (Will Complete If Time Permits) 

1.​ Advanced LLM-based annotation with high-confidence prediction 
2.​ Interactive visualization dashboard 
3.​ Performance optimizations for large-scale models 
4.​ Video tutorials and demonstrations 

Qualifications 

As a Master's student in Computer Software Engineering at Northeastern University, I bring 
relevant expertise to this project: 

●​ Proven Contribution to SBOannotator: I've already submitted a functional PR (#2: 
https://github.com/draeger-lab/SBOannotator/pull/2) implementing the LLM 
integration foundation 

●​ Experience in NLP system development with fuzzy matching techniques 
●​ Proficiency in API integration and distributed data processing 
●​ UI development skills with PyQt 
●​ Coursework in "Theory & Practice of AI Gen Model" providing insights into effective 

LLM implementation 
●​ Strong Python programming skills with experience in scientific computing libraries 

Related Work 

My proposed enhancements build upon existing work in systems biology annotation tools 
while addressing specific gaps: 

●​ Existing SBO term annotation tools lack dynamic updating and intelligent suggestions 

https://github.com/draeger-lab/SBOannotator/pull/2


●​ Current SBML editors provide limited visualization capabilities for annotation 
coverage 

●​ Few tools integrate multiple enzymatic data sources for comprehensive annotation 

Conclusion 

This project represents a significant advancement for SBOannotator, transforming it from a 
tool with static, hard-coded functionality into a dynamic, intelligent system capable of 
adapting to evolving ontologies and leveraging multiple data sources. I am committed to 
delivering a realistic, well-tested implementation that maintains SBOannotator's core 
classification strengths while addressing its current limitations, with clear prioritization and 
contingency plans to ensure successful completion within the GSoC timeframe. 
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