Homework 5 (Extra Credit) | Streams
CSE 344 - Introduction to Data Management

You will find the starter files linked on the website as “cse344-hw5.zip”.

Note on collaboration: We encourage you to work in groups for these assignments. Discuss and
argue your approach at a high level. You should type your own solutions (i.e. do not copy work).

While we provide a testing framework for components of your stream processing pipeline, the
testing we provide is not an end-to-end test. It is up to you to print/debug your results to check if
it makes sense.

Submit your solution files to Canvas. Things to turn in:
e hwb5_code.zip

1. Kafka and Flink (20 points)

In this section, we will be processing the house power consumption data set provided by UC
Irvine’s ML dataset repository. This dataset describes the minute-by-minute power consumption
of a house for almost 4 years. For more details, refer to the schema description on the linked
site.

To run your code on top of the Kafka system, you will have to set up a Kafka and ZooKeeper
server. We have provided shell scripts for you to spin up a single Kafka server with the
appropriate topics created and other tasks as well. These scripts merely call Kafka’s provided
scripts in order to perform the setup. We recommend that you do NOT run your server on
attu as different instances of ZooKeeper and Kafka (from you and your peers who are
also doing this assignment) may collide.

Use the script startCluster.sh to spin up a ZooKeeper + Kafka instance and also create the
topics.

Because Kafka persists data automatically, you should clear the data before each test run of
your program. To do this, use the script resetMessages.sh to temporarily set the retention
period of each topic to 1 second.

When you are done with this section you should shut down the server instance by using the
script stopCluster.sh. This will delete the topics for this HW.


https://archive.ics.uci.edu/ml/datasets/individual%2Bhousehold%2Belectric%2Bpower%2Bconsumption
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php

We have also provided the code in your starter file that will generate an input stream of rows of
the input file. Those messages will be set to the topic “data_in”. The format for this row, and thus
the serialization and deserialization technique is facilitated through Apache Avro (provided
through Flink). Avro describes serialization through JSON descriptors. For the input data
schema, refer to the “hpc_avro.json” file and the “dataln” method that converts the data
file into a stream.

Your job is to complete the Flink dataflow logic for the methods “partA” and “partB”. For these
methods, you will be adding Flink operators to the execution environment. Note that these
dataflows are done completely in Apache Flink, i.e. you do not need to worry about intermediate
serialization and deserialization to Kafka. The serialization and deserialization processes from
Kafka to Flink (and back to Kafka) have been provided.

The combined streaming system of Kafka and Flink will be using localhost (your local machine’s
network) to relay messages. By default, Kafka consumers use at-most-once delivery guarantees
and Flink uses at-least-once delivery guarantees internally. This means that running your
program over the 2-million+ data points may occasionally have different results between
separate executions of your program. Using the above default setup, you may note that
ZooKeeper is running on its default port, 2181 and Kafka is running on its default port, 9092.

To test your solution’s operators use:

mvn clean compile
mvn test

To run your program’s main method use:

mvn clean compile
mvn exec:java -DmainClass="edu.uw.cs.HW5"”

(a) (10 points) Find the “apparent power” of the house when “reactive power” is high. To do this,
filter out rows that have a “global reactive power” less than or equal to 0.1 kilowatts. Then,
compute the “global apparent power” for each record with the following formula:

“global apparent power” = ((“global active power”)? + (“global reactive power”)?)°

(b) (10 points) Find the average sub-meterings for every 24-hour window. Use a time-based
tumbling window. The row you produce should have the start timestamp for each window you
find and the respective average sub-meterings.



When your program finishes processing the data file, you will notice that the application hangs
(does not terminate). This is due to the unbounded nature of our data as your program
anticipates more data. At this point, you can check the cardinality of your processed results:

As a sanity check, you can observe the number of rows in the “data_in” topic with the below
command:

./kafka 2.12-2.2.0/bin/kafka-console-consumer.sh \
--bootstrap-server localhost:9092 \
--topic data_in \
--from-beginning

When the consumer appears to hang, interrupt the process with ctrl-c. You should get the
message “Processed a total of 2074863 messages”. This is the number of rows in the original
data.

To check the “part_a_out” topic use:

./kafka 2.12-2.2.0/bin/kafka-console-consumer.sh \
--bootstrap-server localhost:9092 \
--topic part_a out \
--from-beginning

You should see “Processed a total of 1016186 messages”

To check the “part_b_out” topic use:

./kafka 2.12-2.2.0/bin/kafka-console-consumer.sh \
--bootstrap-server localhost:9092 \
--topic part b out \

--from-beginning

You should see “Processed a total of 1441 messages”



	Homework 5 (Extra Credit) | Streams 
	1. Kafka and Flink (20 points) 

