Newton's gravitational law

Useful data

 $G = 6.67 \times 10-11 \text{ N m}^2 \text{ kg}^{-2}$ Radius of the Moon = $1.64 \times 10^6 \text{ m}$ Earth's mass = $5.97 \times 10^{24} \text{ kg}$ Radius of the Earth = $6.37 \times 10^6 \text{ m}$ Moon's mass = $7.34 \times 10^{22} \text{ kg}$ Earth-Moon distance = $3.8 \times 10^5 \text{ km}$ Sun's mass = $2.0 \times 10^{30} \text{ kg}$ Earth-Sun distance = $1.5 \times 10^8 \text{ km}$

1. You may sometimes find it difficult to get up from the sofa after watching a TV programme. Assuming the force of gravity acts between the centre of your body and the centre of the sofa, estimate the attraction between you and your sofa.

Answer = Units =

2. A gravitational field at a point in space is 50 N kg^{-1} . If an electron were placed at that point, what force and acceleration would it feel?

Answer = Units =

3. At what distance apart would two equal masses of 150 kg need to be placed for the force between them to be 2.0×10^{-5} N?

Answer = Units =

4.	Calculate the gravitational pull of the Earth on each of the following bodies: the Moon;	
	Answer =	Units =
	satellite A with mass 100 kg at a distant	ce from the Earth's centre 4.2 × 10 ₇ m;
	Answer =	Units =
	and satellite B mass 80 kg at a distance	from the Earth's centre 8.0 × 10 ₆ m.
	Answer =	Units =
5.	Show that the unit for G , the universal g as $m^3 s^{-2} kg^{-1}$.	ravitational constant, can be expressed
	Answer =	Units =
6.	Calculate the weight of an astronaut wh the Moon?	ose mass (including spacesuit) is 72 kg on
	Answer =	Units =
	What is the astronaut's weight on Earth?	
	Answer =	Units =
	Comment on the difference.	

7.	Show that the pull of the Sun on the Moon is about 2.2 times larger than the pull of the Earth on the Moon.	
8.	Answer = Why then does the Moon orbit the Earth	Units =
	Answer =	Units =
		ans to send a manned mission to Mars later 0^{23} kg and a radius 3.38 x 10^6 m. G = 6.67 x
9.	(a) The mass of a typical astronaut plus gravitational force acting on such an as	spacesuit is 80 kg. What would be the stronaut standing on the surface of Mars?
	Answer =	Units =
	(b) State whether an astronaut on Mars	would feel lighter or heavier than on Earth.
10.		parated by a distance of 9.0 m. A third mass of ween the first two masses at a distance of 3.0 t (resultant) force on the middle mass?
	Answer =	Units =