
Overview 



Main Tab – Project Overview 

Echoes of Pharloom 

Echoes of Pharloom is a focused Pomodoro study companion that helps users stay engaged, 

mindful, and productive through guided study sessions.​
 

It balances structure and creativity: offering personalized session plans, immersive ambience, 

and progress tracking powered by modern web technologies. 

 

1. Goal of the App 

Echoes of Pharloom aims to support consistent focus through: 

●​ Structured Study Plans – Users create or randomize session layouts with breaks.​
 

●​ Motivational Feedback – Audio, visual, and streak indicators encourage daily 

consistency.​
 

●​ Frictionless Flow – Session persistence, focus detection, and background ambience 

provide a calm, distraction-free environment.​
 

Target users are students and professionals seeking a guided study environment with mood and 

accountability components. 

Design principles: 

●​ Simplicity – Minimal clicks and clean layout.​
 

●​ Resonance – Audio and visuals enhance the user’s mindset.​
 

●​ Transparency – Every feature serves user agency and mental flow.​
 

 

 



2. High-Level Architecture 

Echoes of Pharloom is composed of three primary layers: 

1.​ Frontend (React + TypeScript) – Handles user experience, authentication, and local 

state management.​
 

2.​ Services (Node.js AWS Lambdas) – API layer that stores user data, handles 

sessions, profiles, and feedback.​
 

3.​ Infrastructure (AWS CDK) – Automates the provisioning of Cognito, API Gateway, 

S3, and DynamoDB.​
 

Data flows primarily through HTTP JSON APIs with token-based authentication via Cognito.​
 Frontend → API Gateway → Lambda → DynamoDB/S3. 

 

3. Core Data Flow 

1.​ Authentication:​
 User signs in via Cognito hosted UI (PKCE). Tokens stored in localStorage.​
 

2.​ Session Creation:​
 The frontend constructs or randomizes a study plan.​
 Authenticated users’ sessions are stored in DynamoDB via createSession.​
 

3.​ Study Runtime:​
 App.tsx manages timer phases, events, and ambience.​
 Events are appended locally and optionally sent to /sessions/{id}/events.​
 

4.​ Profile Management:​
 The user can upload a profile photo → frontend requests a pre-signed S3 URL → 

uploads file → updates profile record via /profile.​
 

5.​ Feedback Flow:​
 FeedbackModal → POST /feedback → backend validates + sends email via Resend → 

returns success response.​
 

 

 



4. Tech Stack Summary 

Layer Technologies Notes 

Fronten

d 

React, TypeScript, MSW, Amplify 

Hosting 

SPA, local storage caching, Cognito 

auth 

Backend Node.js (Lambda), API Gateway, 

DynamoDB, S3 

Stateless microservice design 

Infra AWS CDK (TypeScript) One-stack deployment managing all 

resources 

Auth AWS Cognito (PKCE Flow) Handles tokens, password reset, 

hosted UI 

Email Resend API Handles feedback email delivery 

Hosting AWS Amplify Automatic builds and deploys for 

frontend 

 

5. Quick Links 

●​ GitHub Repository: Link​
 

●​ Technical Documentation: Google Doc – Echoes of Pharloom Overview​
 

●​ Amplify App URL: (to be added post-deploy)​
 

●​ AWS Console Shortcuts:​
 

○​ DynamoDB Table​
 

○​ S3 Bucket (ProfilePhotos)​
 

○​ Cognito User Pool​
 

○​ API Gateway Console 

 

https://github.com/Hermano727/Echoes-of-Pharloom
https://docs.google.com/document/d/1-PFfj60IWHIwPLEwis_iFzIdUSUc_xD6zW_ymEm-iLw/edit?usp=sharing


Frontend 



Overview 
The frontend is a React + TypeScript single-page application hosted on AWS Amplify.​
 It manages user authentication, study sessions, streak tracking, and interactive ambience 
through modular components. 

 

1. Routing and Entry Point 

File: src/index.tsx 

●​ Bootstraps React in StrictMode.​
 

●​ Enables Mock Service Worker (MSW) in development (enableMocks).​
 

●​ Mounts BrowserRouter with the following routes:​
 

○​ / → Home​
 

○​ /study → Study Page​
 

○​ /create → Create Session​
 

○​ /profile → Profile​
 

○​ /info → Info​
 

○​ /auth/callback → AuthCallback​
 

 

2. Authentication System 

File: src/auth/AuthContext.tsx 

●​ Wraps the app with AuthProvider.​
 

●​ Implements PKCE OAuth2 flow for Cognito Hosted UI.​
 



●​ Stores id_token and access_token in localStorage.​
 

●​ Provides signIn(), signOut(), and getUser() helpers.​
 

●​ Supports a mock local user mode in development.​
 

 

3. Study Engine 

File: src/App.tsx 

Handles the full lifecycle of a study session: 

●​ Loads session plan from location.state, localStorage, or fallback.​
 

●​ Persists activePlan locally to survive reloads.​
 

●​ Manages phases: running, break, completed.​
 

●​ Records events (startSession, appendEvent, completeSession) both locally and 
optionally via backend.​
 

●​ Detects focus loss and displays toasts.​
 

●​ Integrates audioManager.ts and videoManager.ts for ambient feedback.​
 

●​ Interfaces with TimerControls, HUD, and VolumeControl.​
 

 

4. Create Session 

File: src/pages/CreateSession.tsx 

●​ Manual or randomized session creation modes.​
 

●​ Inputs total session length and number of segments.​
 

●​ Enforces minimum break length (1 minute).​
 



●​ Generates session plan and stores it for /study navigation.​
 

●​ Optionally syncs with backend if user is authenticated.​
 

 

5. Home Page 

File: src/pages/Home.tsx 

●​ Fetches area data and user summaries from /areas and /home.​
 

●​ Displays streaks and study summary tiles.​
 

●​ Provides navigation to CreateSession, Profile, and Info pages.​
 

 

6. Profile Page 

File: src/pages/Profile.tsx 

●​ Tabs: Overview, Personal Info, Data & Privacy, All Sessions.​
 

●​ Profile photo uploads:​
 

○​ POST /profile/photo/uploadurl​
 

○​ PUT file to S3 using pre-signed URL​
 

○​ PUT /profile with public photo URL​
 

●​ Supports in-app reset and password change via Cognito IDP.​
 

 

7. Utilities and Components 

Notable utilities: 



●​ api/index.ts – fetch wrapper adding Authorization: Bearer id_token 
header.​
 

●​ local/data.ts – handles offline session data and streak computation.​
 

●​ utils/VolumeControl.tsx – stylized volume slider and animations.​
 

Core UI components: 

●​ TimerControls – play/pause/reset/fullscreen, contextual actions.​
 

●​ FeedbackModal – collects and sends user messages.​
 

●​ BottomCredits – adaptable overlay or inline credits with safe-area awareness. 

 



Backend 



Overview 
The backend consists of Node.js AWS Lambda functions exposed via HTTP API Gateway.​
 Each Lambda handles a specific route, with shared logic abstracted in services/lib. 

 

1. API Endpoints 

Lambda Route Auth Purpose 

listAreas.ts GET /areas Public Returns available study areas. 

getHome.ts GET /home Protecte
d 

Fetches user streaks and 
recent sessions. 

createSessio
n.ts 

POST /sessions Protecte
d 

Creates new study session 
records. 

appendEvent.
ts 

POST 
/sessions/{id}/events 

Protecte
d 

Appends session event (focus 
lost, completion). 

getProfile.t
s 

GET /profile Protecte
d 

Retrieves user profile info. 

putProfile.t
s 

PUT /profile Protecte
d 

Updates user profile record. 

getUploadUrl
.ts 

POST 
/profile/photo/upload
url 

Protecte
d 

Generates pre-signed S3 
upload URL. 

feedback.ts POST /feedback Public Sends user feedback via 
Resend API. 

 

2. Data Model 

DynamoDB single-table structure: 

PK SK Entity Attributes 



USER#<su
b> 

PROFILE Profile { name, photoUrl, 
updatedAt } 

USER#<su
b> 

SESSION#<
id> 

Sessio
n 

{ plan, createdAt, 
completedAt } 

USER#<su
b> 

EVENT#<id
> 

Event { type, timestamp, 
duration } 

●​ ​
Uses PAY_PER_REQUEST billing.​
 

●​ Simple key-based access patterns.​
 

 

3. Auth & Security 

●​ Protected routes require a valid JWT token verified by the API Gateway’s Cognito 
authorizer.​
 

●​ Public routes (/areas, /feedback) explicitly omit auth.​
 

●​ All endpoints return CORS-friendly responses for browser access.​
 

 

4. Runtime Configuration 

Each Lambda is configured with: 

●​ TABLE_NAME – DynamoDB table reference​
 

●​ PROFILE_PHOTO_BUCKET – S3 bucket name​
 

●​ RESEND_API_KEY, CONTACT_FROM_EMAIL, CONTACT_TO_EMAIL – feedback 
integration​
 

 



Subtab – Infrastructure (CDK) 

Overview 
Infrastructure is managed via AWS CDK (TypeScript), defined under 
infra/lib/echoes-infra-stack.ts.​
 The CDK stack provisions all core services declaratively, ensuring reproducible environments. 

 

1. Resources 

Resource Description 

DynamoDB Table Single table (PK, SK), PAY_PER_REQUEST, dev removal 
policy. 

Cognito User Pool & 
Client 

Handles user registration, login, password resets. 

API Gateway (HTTP) Connects to backend Lambdas; CORS enabled. 

S3 Bucket (ProfilePhotos) Public photo hosting; pre-signed PUT access. 

Lambda Functions Deployed from /services/api, Node.js 20 runtime. 

 

2. Environment Variables 

Each Lambda automatically receives environment variables for: 

TABLE_NAME 
RESEND_API_KEY 
CONTACT_FROM_EMAIL 
CONTACT_TO_EMAIL 
PROFILE_PHOTO_BUCKET 
 

 

3. Outputs 

CDK exports: 



ApiUrl 
UserPoolId 
UserPoolClientId 
UserPoolDomain 
Region 
 

 

4. Deployment Behavior 

●​ CDK synthesizes (cdk synth) → deploys (cdk deploy) the entire stack.​
 

●​ Frontend uses Amplify for separate hosting and build.​
 

●​ Environments are isolated: dev, prod, etc.​
 

●​ IAM roles are auto-generated with least privilege. 

 



Runtime and Behavior 



1. Frontend Initialization 
●​ App loads MSW mocks in dev mode.​

 
●​ AuthProvider hydrates Cognito tokens.​

 
●​ BrowserRouter loads initial route.​

 

2. Session Lifecycle 

1.​ User creates a session (CreateSession).​
 

2.​ Navigates to /study → session begins.​
 

3.​ Events (focus lost, completion) appended locally and optionally to backend.​
 

4.​ On completion, app plays success audio and updates streaks.​
 

3. Profile Management 
●​ Upload photo via pre-signed S3 URL → save URL → instantly visible.​

 
●​ Change password via Cognito IDP APIs.​

 
●​ Reset app data locally if needed.​

 

4. Feedback Flow 

●​ Modal POSTs to /feedback.​
 

●​ Lambda validates input and relays via Resend.​
 

●​ Returns { ok: true } with CORS headers.​
 

●​ Frontend shows success banner.​
 



5. Error Handling & Offline Mode 

●​ Local persistence in local/data.ts ensures no session data loss.​
 

●​ Missing auth → local fallback mode.​
 

●​ Network errors → user toasts and cached recovery. 

 


	Overview 
	Main Tab – Project Overview 
	Echoes of Pharloom 
	1. Goal of the App 
	 
	2. High-Level Architecture 
	3. Core Data Flow 
	 
	4. Tech Stack Summary 
	5. Quick Links 


	Frontend 
	Overview 
	1. Routing and Entry Point 
	2. Authentication System 
	3. Study Engine 
	4. Create Session 
	5. Home Page 
	6. Profile Page 
	7. Utilities and Components 


	Backend 
	Overview 
	1. API Endpoints 
	2. Data Model 
	3. Auth & Security 
	4. Runtime Configuration 


	Subtab – Infrastructure (CDK) 
	Overview 
	1. Resources 
	2. Environment Variables 
	3. Outputs 
	4. Deployment Behavior 


	Runtime and Behavior 
	1. Frontend Initialization 
	2. Session Lifecycle 
	3. Profile Management 
	4. Feedback Flow 
	5. Error Handling & Offline Mode 


