
Iceberg Materialized Views:
Lineage and State Representation

Introduction
In the last community sync on Materialized Views, community members agreed to split the
information that is used to determine the materialized view staleness to two parts:

●​ Lineage information:
○​ Tracked on the view side.
○​ Stored as a map, referred to in this doc as L. The map contains an entry (k, v) for

each view child (i.e., another view or table that the view depends on), where k is
the child catalog identifier and v is an assigned ID to that child. See rest of the
doc for the nature of the children (whether they are immediate children or
transitive children).

●​ State information:
○​ Tracked on the table side.
○​ Stored as a map, referred to in this doc as S. The map contains an entry (v, s) for

each deeply nested child of the view, where v is the ID of the child (drawn from
the same pool of IDs used in the lineage map L) and s is the state information of
v. If v refers to a table then state information is the refresh time snapshot ID, and
if v refers to a view then state information is the (child’s) view version ID at
refresh time.

Purpose of Lineage Information
The lineage information allows engines that use a different dialect than the view’s dialect to
leverage the storage table without needing to parse the view text. By having child information
readily available, these engines can avoid failures caused by parsing incompatible dialects.

Type of IDs
One open design question is about the type of the IDs used in both the lineage and state
information. Such IDs can be sequence numbers (whose scope is within each view; they restart
from 1 for each view), or the respective table/view UUID.

Below are the methods for setting IDs in both cases.

https://lists.apache.org/thread/bhmxo1w1bdp1p2hh842kpm2gy1g5rscp

Sequence Numbers

●​ The list of children tracked by the lineage map L should encompass all the view’s
transitive children. Since sequence IDs scope is local to each view (i.e., they start form 1
for each view), the lineage map L cannot be spread across multiple child nested views.

●​ At view creation or refresh time, the entire view tree must be parsed by the engine to
come up with the deep children sequence IDs. Such sequence IDs of deeply nested
children are used to create the lineage map L on the view. Same sequence IDs are used
to set the state information S on the storage table.

●​ At view evaluation time, IDs on both the lineage map L and the state map S are
directly used to correlate the catalog identifier (of a child) with state information.

UUIDs

●​ The list of children on each view can be limited to the immediate children only since
UUIDs are globally unique.

●​ At view creation time, for both regular (non-materialized) and materialized views, only
the current view must be parsed. UUIDs of immediate children are used in the lineage
map L of the respective view.

●​ At view refresh time, deep lineage is obtained by traversing the view tree. Deep lineage
will still be a map L_deep from a catalog identifier to a UUID. UUIDs from the deep
lineage map L_deep are used to set the state S on the storage table.

●​ At view evaluation time, similarly, deep lineage L_deep is calculated from the nested
views, then UUIDs from L_deep and S are used to correlate the catalog identifiers with
state information.

Advantages of using UUIDs

●​ UUIDs avoid having engines parse incompatible views (which is the main purpose of
introducing lineage information in the first place). In the case of sequence IDs, an engine
is expected to deeply parse the nested views at creation or refresh time, even if their
dialect is not compatible with the main view, which is quite possible. In the case of
UUIDs, each engine is responsible for setting lineage information of its own created
views. Hence, cross dialect parsing is not required.

●​ UUIDs are more resilient to missing lineage information (in case one engine does not
provide them) since they can always be deterministically reconstructed by parsing (as a
fallback). IDs from this reconstruction will always be consistent with info stored in the
state map. On the other hand, the state map in the case of sequence IDs is meaningless
if the lineage is missing, and parsing is always required.

●​ Using sequence IDs requires the refresh module to reproduce the same IDs used by the
create view module. Depending on this constraint is fragile. The other option is to
delegate creating the sequence IDs exclusively to the refresh module, but that will

require the refresh module to modify the view information, which is an unnecessary
coupling and can lead to less modular code.

●​ When using sequence IDs, the lineage information on a view becomes invalid once a
child view changes which tables/views it references. That does not happen when using
UUIDs.

●​ UUIDs are already an established concept in Iceberg. This enables lineage information
to be useful in other applications other than materialized view staleness, such as general
lineage calculation/tracking.

●​ Lineage using UUIDs is applied equally on materialized and non-materialized views
allowing for a simpler view spec, and frictionless conversion between materialized and
non-materialized views.

	Introduction
	Purpose of Lineage Information

	Type of IDs
	Sequence Numbers
	UUIDs
	Advantages of using UUIDs

