
Anais Urlichs​ ​ ​ ​ ​ ​ ​ ​ Scalability Solutions

Scalability Solutions

Disclaimer: The content of these research summaries has been written after a year of reading, researching and
writing about blockchain technologies and applications. Definitions may vary depending on the paper cited. The
summaries provided are subject to further iterations; whereby, the first version relies on my personal
understanding of the industry and the technologies. Most of it is based on informal discussions, academic papers,
industry whitepapers and primary research. These research summaries may foster from previous research but do
not replicate any ideas or content created previously.

For comments, references, contribution proposals etc. please contact Anais Urlichs on Twitter, LinkedIn or email
under urlichsanais@gmail.com

This docs has last been updated on: 07.04.2019

Overview
Assuming that a replicated ledger, or blockchain has similar user requirements as a
centralised database, it also has to provide linear scalability. Meaning, no matter how many
users access the ledger and the data stored within, the ledger has to operate reliable without
high latency and risk of failure. Thus, a user should be able to access accurate information in
a timely manner. Some databases are accessed by thousand of people, who want to retrieve
the latest and most accurate information stored in the database. Accessing data from a
database may be referred to as querying. Queries either access the raw information or
require the processing of several entries to provide the requested outcome.

Blockchain networks, such as Bitcoin or Ethereum, provide the value transfer between
several participants. Information may be submitted, processed and retrieved from the ledger
to allow for further operations. Each transaction has to be processed by all full nodes. (For
more information, please refer to the summary on Replicated Systems.) If the network is
under attack or partitioned, the user/node may not be able to access the requested data.
Assuming that the ledger is operating at full capacity, Ethereum is currently able to process
around 13 transactions per second, while Bitcoin processes around 8. In comparison, Visa
can handle up to 50.000 transactions per second. Given these information, it becomes clear
that Visa is able to operate at much higher capacity than the most popular blockchain
networks.

Once the user/node has submitted a transaction to the network, she/he has to wait until the
transaction is processed by the miners or validators and declared to be final. (For more
information, please refer to the summary on Consensus Mechanisms.) The time period
required for a user to wait for a transaction to be submitted, processed and finalised may be
referred to as the network latency. Note that the latency of a network may be independent of
its throughput. The throughput measures how many transactions are processed, or the
number of packages sent within a specified time period. While the throughput of a system
might be quite high, the latency might be high too and vice versa. A system with limited
throughput may have high latency or low latency. The effect of the throughout and latency on
a system is design dependent. Systems aim to optimise for a high throughput and low
latency. Generally, replicated ledgers have high latency and limited throughput. Scalability
solutions aim to optimise and improve latency and throughput to provide a better user

https://twitter.com/urlichsanais
https://www.linkedin.com/in/urlichsanais/
mailto:urlichsanais@gmail.com
https://docs.google.com/document/d/10YHtXsPkVzjdSPXh72nWDxi84-aTv05tNTeuvKjZhN8/edit?usp=sharing
https://docs.google.com/document/d/1wHBXuzomF2WAbSvHWeerxceKLUYojrHUrwm0zo8K4-M/edit?usp=sharing
https://ethereum.stackexchange.com/questions/25664/where-is-blockchain-scalability-bottleneck

Anais Urlichs​ ​ ​ ​ ​ ​ ​ ​ Scalability Solutions

experience and allow for various use cases, which required the timely processing of
transactions.

Types of Scalability Solutions
We can differentiate between two categories of scalability solutions. The first one is referred
to as Layer 1 and the second one as Layer 2 solution.

Background Information
Overall, blockchains have one chain. New transactions are gathered into blocks of data,
which become appended to the existing chain in sequential order. Each additional block
references the block prior and so on. Therefore, each additional block is linked to the
previous blocks of the blockchains. In case the data of any previous block is modified, the
change will tamper with all sequential blocks in the network. Resulting, every change of a
block would be visible to all nodes in the network. Consensus Mechanisms, in which the
majority of nodes are honest, would prevent any other node in the network from changing
the data within previous blocks. If the majority of the network is controlled by one central
authority, it will be possible for this entity to make changes to the blocks without anyone
being able to prevent it. If that happens, the network is not secure nor tamper-proof.
Meaning, information on the network may be modified. The hype about public blockchains is
that its mechanism design prevents exactly such situations from happening.

This write-up will refer to the blockchain that deals with the main dependencies between a
network of nodes, such as the Ethereum blockchain, as the main chain. All transactions are
submitted to the main chain. The nodes on the main chain are responsible to process, verify,
and append new blocks to the existing chain. As mentioned, if the full nodes and miners,
who do the work on the blockchain, are malicious, then the information on the ledger may be
tampered with. Therefore, it is important to have as many honest nodes/miners in the
network as possible. The more decentralised the network is, the more nodes may aim to
participate in the consensus protocol, and the more likely it may be that the majority of nodes
within any given consensus round are honest.

Assuming that we have a network of 50.000 nodes, of which 5000 (10%) are malicious.
Each consensus round will draw 1021 nodes at random. In this case scenario, it is unlikely
that all nodes, who have been picked are malicious. In contrast, if the network would have
fewer nodes and pick fewer verifiers but the same number of malicious nodes, it would be
more likely that the majority of nodes are malicious. Summarising, the security of the
network depends on its design and the number of nodes securing it. If we split up the
number of nodes within one network across multiple networks, then the security on the
individual networks will be less than on the original network. This is one of the issues that
scaling solutions are concerned with.

Layer 1
Layer 1 scaling solutions refer to any solution that may make the main chain more scalable
without separating individual nodes from the main chain. Note that the chain may still be split
up into multiple sections but nodes can change between the different sections and are not
dependent on the security within an individual section. This should not be confused with a

https://docs.google.com/document/d/1wHBXuzomF2WAbSvHWeerxceKLUYojrHUrwm0zo8K4-M/edit?usp=sharing

Anais Urlichs​ ​ ​ ​ ​ ​ ​ ​ Scalability Solutions

network partition. These summaries refer to network partitions as involuntary segmentation
of the main chain into smaller sections. Each section may believe that it is operating with the
same level of security and consistency as before the network split, without realising that a
partition has happened. In contrast, the purposeful separation of the main chain into
individual segments may still allow nodes to switch between and communicate with other
sections. The benefit of Layer 1 solutions is that the security of the main chain is still
preserved. Either the main chain remains as a whole and benefits from technical solutions
that provide higher scalability, or the main chain is segmented according to predefined
mechanisms, which generally allow nodes to communicate with other segments. No
individual section of the chain should operate in complete isolation from the other chains.
The goal of Layer 1 scaling solutions is to allow the network to distribute the processing of
transactions between several groups of nodes. Resulting, only a subsection of the network
has to process a subset of the transactions. In comparison to the entire network verifying all
transactions.

Figure 1 Transactions have to be processed by all nodes in the network (1) vs. a subsection of nodes processing

a subsection of transactions in the network (2)

Layer 2
In contrast to Layer 1 scaling solutions, Layer 2 solutions allow individual nodes to become
separated from the main chain. This usually happens for a predefined duration of time or
until a specific condition is met. Highly abstracted, a group of nodes decide to transfer value
between each other for a certain time or until predefined conditions are met, leave the main
chain into a separate chain or transaction channel, transfer value (e.g. tokens) between each
other, and enter back into the main chain. Once the group of nodes reenters the main chain,
a smart contract will verify that all conditions are met and that the information provided is
accurate.

Anais Urlichs​ ​ ​ ​ ​ ​ ​ ​ Scalability Solutions

Within the time period, during which nodes are not on the main chain, they do not have
access to the security of the main chain. Therefore, the security has to be provided through
the mechanism design of the Layer 2 solution. The purpose of Layer 2 scaling solutions is to
take transactions away from the main chain and only append a final state/balance of the
individual nodes to the main chain. Resulting, the main chain does not have to verify
individual transactions that lead to the desired end-state between a group of nodes but
solely the end-state.

The sections below will discuss specific designs of Layer 1 and Layer 2 scaling solutions.

Sharding (Layer 1)
Background
The term sharding is taken from computer science and database design. Generally,
databases can be categorised into relational and non-relational databases. While
non-relational databases do not follow clear patterns that allow for the automatic processing
of data, relational databases do. Each entry into the database will have a clear identifier that
allows for the retrieval of the data. Imagine a relational database with hundreds of rows and
columns. Each row will have a different set of data linked to a unique identifier. However, a
machine will not be able to filter out the desired row(s) without iterating through the entire
database. This iteration may be highly time consuming, depending on the size of the
database and the complexity of the data that is stored and processed within.

To make the filtering and processing of data more efficient, the data may be split up into
several chunks. For example, if a database stores all first names in alphabetical order, then it
may be beneficial to split it up into several groups. The first one may have all names that
start with the letter A to I, the second one from J to P and the last one from Q to Z.
Depending on the letter of the first name, the machine will have to look up the information
within a different section of the database, which reduces the number of rows it will have to
filter through.

Sharding
A similar design is used in the sharding of replicated ledgers. However, in that case,
sharding is much more difficult to implement since the data is not stored on one server but
replicated across multiple machines. Resulting, it is more difficult to keep the ledger in
synchrony. Another major difference is that each shard usually does not store different
information. For example, one shard will not only process utility tokens, while another shard
is specialised on processing security tokens. Instead, each shard represents a separate
blockchain that will process whatever transactions are received and aligned with its
requirements. Usually, all shards will also depend on the same design properties and run the
same consensus protocol. This allows for higher consistency across shards.

Summarising, a blockchain is one main chain that processes all transactions. Thus, the main
chain is a central point of failure and throughput blockage. To allow for more efficient
transaction processing, the main chain is either replaced or complemented by multiple
separate chains. Each chain has to process only a subsection of all incoming transactions.
All nodes on the main chain will be shuffled and randomly allocated across shards. This way,

Anais Urlichs​ ​ ​ ​ ​ ​ ​ ​ Scalability Solutions

a malicious node has it more difficult to coordinate an attack with other malicious nodes
across the network since it does not know which chain it will be assigned to. Note that the
design of the shards varies between blockchains. Some blockchains may not choose to
shuffle nodes and randomly assign new nodes to separate shards. Those nodes will then
remain on their assigned shard until there are reasons to reallocate nodes to another shard.

All chains may communicate with each other if needed. The latter property is required to
process cross-shard transactions. Assuming that Alice is on chain 1 and Bob is on chain 4.
Alice wants to transfer 0.2 eth to Bob and submits a transaction to her chain. The
miner/validator nodes on Alice’s chain have to first verify that Alice has enough funds to pay
transaction fees and send 0.2 eth to Bob. Along with a proof that Alice has all funds
available, they will send the transaction to the validators on Bob’s chain. The validators on
Bob’s chain trust the proof provided from the validators on Alice’s chain and submit the 0.2
eth into Bob’s address. This is a highly simplistic description of the processes that actually
happen and the mechanisms cross-shard communication may depend on.

Figure 2 Simplified sharded ledger with beacon chain

Furthermore, the following paper outlines how cross-shard validation may happen. Special
considerations also have to be taken for light nodes using the ledger. Generally, if the ledger
runs on one main chain it can provide additional security assurance to light nodes. In the
case of sharded blockchains, the security given by the network size is missing and light
nodes may even end up on malicious shards. This paper outlines how fraud proofs can help
to provide additional security assurance.

Several sharding designs implement a beacon chain to do certain tasks in the network; for
instance, to provide additional security, retrieve and save snapshots and foster cross-shard
communication. Snapshots provide the hash of the latest state of e.g. the shard. A beacon
chain is a separate blockchain that connects to all shards. Nodes may enter the network

https://arxiv.org/pdf/1708.03778.pdf
http://www0.cs.ucl.ac.uk/staff/M.AlBassam/publications/fraudproofs.pdf

Anais Urlichs​ ​ ​ ​ ​ ​ ​ ​ Scalability Solutions

through the beacon chain and then either stay as validators on the beacon chain or become
assigned to particular shards (either as users and/or validators). The beacon chain may be
responsible to assign and reshuffle nodes across shards, whereby it may create additional
shards or reduce the number of shards available, depending on the number of nodes on the
network. Thus, the beacon chain is connected to all shards, which allows shards to
communicate with each other. In this case, the beacon chain is responsible to route
messages between shards. The downside of such dependency between shards and the
beacon chain is that the beacon chain might turn into the bottleneck of the system. In case
the beacon chain fails, all shards may also be compromised.

The implications of an individual chain in a sharded system may have on the rest of the
system is highly design dependent. There are several projects that work on a
sharding-based scalability solution, including:

●​ Near Protocol
●​ Ethereum 2.0
●​ Zilliqa

Side Chain/Subchain (Layer 2)
After understanding the principles of sharded ledgers, side chains, also called subchains,
should be quite easy to grasp. However, side chains should not be confused with sharded
ledgers. While a sharded ledger may not have a main chain or a beacon chain that shards
depend on, side chains are blockchains that are still dependent on the main chain. Overall,
the ledger may have a main chain, which processes all transactions like a normal chain but
then has several chains running in parallel. The main chain would not necessarily be
responsible for processing any transactions from the side chains. However, the side chain
may wish to submit ‘snapshots’ to the main chain.

Figure 3 Simple representation of a side chain

The snapshot will be submitted by the side chain to the main chain. In case the side chain
becomes compromised, it will be easier to recover from an attack. Additionally, other

https://nearprotocol.com/
https://github.com/ethereum/eth2.0-specs
https://zilliqa.com/

Anais Urlichs​ ​ ​ ​ ​ ​ ​ ​ Scalability Solutions

applications on the main chain may be able to access information on the side chain through
the snapshot. Note that the main chain should remain completely unaffected by any
applications that run on the side chain. However, if the main chain becomes compromised,
so might the side chain.

Applications that run on the main chain are dependent on the main chain’s transaction
throughput and latency. Thus, if an application requires its users to submit multiple
transactions to the main chain, the main chain might not be capable to process those within
a sufficient time frame. In the case of decentralised gaming, the user cannot wait several
minutes until the ledger registered the newly acquired weapon. Thus, sidechains may be
designed according to the needs and requirements of the application running on top.
Depending on the design of the side chain, its dependency on the main chain, the type of
application utilizing the main chain and the number of nodes verifying transactions, its level
of security will vary.

Plasma (Layer 2)
Scaling solutions foster from quite similar ideas. One of those is the assumption that if the
main chain cannot be made more scalable without compromising on decentralisation and
security, it might be possible to take several chains, which each process only a limited
number of transactions, and operate them in parallel. Plasma is based on similar ideas as it
can be viewed as a system of ordered side chains. Generally, there are two different kind of
Plasma designs, Plasma and Plasma Cash. Both are quite similar with some twerks.
Therefore, Plasma will be described first.

Plasma is built on a Plasma smart contract that runs on the main chain. A Plasma smart
contract provides the access to a side chain, called the child chain. Each child chain may
reference additional child chains within. The plasma child chains are dependent recursively
on the child chain that is closer to the main chain. The information on the child chains are
periodically summarised into a Merkle root and posted on the main chain by the Plasma
operator. The Plasma operator may be an elected node, or the node that first initiated the
Plasma chain through the smart contract. The Merkle root that is published onto the main
chain is the hash of the current state of the Plasma chain and all transactions within. This
can be imagined similar to a court system. Each country might have a supreme court that is
responsible for highly important matters. For all smaller disputes and less impactful
decisions, each state, city and town may have their own legal institutions. Those will only be
able to make decisions that affect the area that is under the subject of the regional
legislations. However, the supreme court can handle decisions that affect all other institution.
In case of a dispute between participants on the Plasma chain, they may rely on the security
of the main chain and the latest state update of the Plasma chain to resolve the dispute.
Each child chain is responsible for the state and the child chains recorded within.

When nodes want to enter into the Plasma smart contract, they have to deposit the amount
of funds they wish to use on the Plasma child chain. Nodes may not transfer more funds on
the child chain than they have locked up in escrow on the main chain. Those funds are then
locked up in the smart contract on the main chain and identical copies of the tokens are
created on the Plasma child chain. In the case of Ethereum, the main chain transacts Ether

https://en.wikipedia.org/wiki/Merkle_tree

Anais Urlichs​ ​ ​ ​ ​ ​ ​ ​ Scalability Solutions

(eth), those are deposited by a user into the Plasma smart contract, and the same amount of
eth are created as eth’ on the Plasma child chain. While the Ethereum main chain runs on
the balance/account based model, Plasma chains run on the UTXO based model (similar to
Bitcoin). This allows the Plasma chain to keep track of several separate outputs per user.
The user would be able to transact different UTXOs with various users, while the system (the
child chain) does not have to worry about the overall balance of the user.

A user/node may stay on the child chain until a specific condition is met or the user initiates
a Plasma exit to the main chain. By existing the Plasma chain, the nodes will have to submit
the Merkle proof of the current state of its tokens. This is followed by a challenging period,
within which other users may challenge the state of the node that wishes to exit the Plasma
chain. If no other user challenges the state of the exiting node, it will be able to enter back
onto the main chain and withdraw funds from the Plasma smart contract in accordance to
the funds recorded in its last state. Thus, if Bob exits the child chain with 1 eth’ he received
from Alice but did not make any transactions himself, then he will be able to withdraw the
funds that he locked up in the plasma smart contract and 1 eth from the funds that Alice
locked up prior to her entering the Plasma chain.

Figure 4 An overview of a main chain and several Plasma child chains.

Plasma cash is a bit different to Plasma in that it utilises non-fungible tokens. Each token
has a unique token ID. Depending on the position of the token in the network, the token ID
will vary. This has been done to limit the size of the Plasma chain that the user has to
download. With Plasma cash, users may only access parts of the Plasma chain, which they
will use and interact with. A Sparse-Merkle tree is an ordered Merkle tree that checks the
inclusion of transactions through Merkle proofs. You can read further into Plasma Cash here
and Plasma. The main drawback of Plasma Cash is that if Alice transfers a token to Bob,
she will not only have to transfer the ID of the token but also its entire history. If the token

https://github.com/loomnetwork/plasma-paper/blob/master/plasma_cash.pdf
https://plasma.io/plasma.pdf

Anais Urlichs​ ​ ​ ​ ​ ​ ​ ​ Scalability Solutions

was first registered by Charlie 15 blocks ago, then Alice will have to provide the entire history
of the token along with it. Otherwise, the token may not be valid. While this data would still
be less than storing an entire blockchain, it may grow over time, depending on the lifespan of
the tokens on the child chain.

Payment Channel (Layer 2)
State Channels
State Channels are off chain Layer 2 scaling solutions for public ledgers such as Ethereum.
While other scaling solutions such as Sharding and Plasma allow multiple parties to enter
onto a different chain, State Channels are designed to accommodate an exchange of value
between a few participants. State Channels are not separate blockchains such as described
earlier. Instead, a predefined number of participants enter into the payment channel through
a smart contract on the main chain. Similar to the Plasma design, each participant has to
lock up their funds in accordance to the amount they would like to transact on the State
Channel with other participants. Once this is done, they are directly connected to each other
and can transfer funds.

Raiden Network
A Raiden Network is similar to a state channel. The difference is that a state channel does
not only allow participants to transfer funds between each other but also to run decentralised
Applications (dApps). In contrast, Raiden Networks are payment channels that connect
multiple nodes with each other. Such as in the graphics provided below.

An issue that both Raiden Networks and State Channels face is that if Bob goes offline, he
cannot check whether or not Alice and Charlie keep behaving honestly. In case either Alice
or Charlie want to leave the payment channel, while Bob is online, but submit the wrong
state to the smart contract on the main chain, Bob will have a chance to dispute the
information provided either by Alice or Charlie by submitting his latest state. Resulting, a
malicious node will not be able to steal funds from the payment channel as long as all nodes
are online and check each other. However, if Alice transfers 5 vETH to Bob, Bob goes
offline, and Alice initiates a channel exit with the wrong state, she might be able to get
through with it. Instead of submitting her current state of 3 vETH, which Alice received from
Charlie, Alice claims to still have 5vETH. Even though Charlie is online and sees what Alice
is doing, he might not even care about Alice submitting the wrong state since that means
that he gets to keep his 3vETH that he transferred to Alice beforehand. Bob is offline, and
the smart contract on the main chain does not know the latest state of the network.

One of the proposed solutions to this problem are watchtowers. Watchtowers are smart
contracts that run on the payment channel and keep track of the latest state of the
transactions. Each transaction will receive an ID to allow for the sequential ordering of
transactions. With each new transaction the ID number increases. Once a new transaction is
submitted, the watchtower will replace its latest state with the new state. Resulting, when a
node submits its current state to the watchtower, the watchtower will compare the provided
state with the latest registered state. If the state IDs match, the node is allowed to exit the
payment channel. However, if the IDs differ, the state provided by the node is wrong and the
node is not allowed to withdraw its funds from the smart contract on the main chain.

Anais Urlichs​ ​ ​ ​ ​ ​ ​ ​ Scalability Solutions

Figure 5 Payment channel

You can learn more about watchtowers here:

●​ Pisa: Arbitration Outsourcing for State Channels
●​ The solution by Celer Network
●​ Towards Secure and Efficient Payment Channels

Main Points

●​ Replicated ledgers have to be linear scalable to provide for high transaction
throughput. Currently, most public blockchains are only able to process a dozen
transactions per second.

●​ The network throughput may reference the number of transactions, which the
network can process within a specific time period. The latency refers to the time
required to process individual transactions.

●​ The effect of the throughout and latency of a system is design dependent. Systems
aim to optimise for high throughput and low latency.

●​ The design of public ledgers are intended to prevent a central authority or malicious
node from tampering with previous blocks.

https://eprint.iacr.org/2018/582.pdf
https://www.youtube.com/watch?v=ofr9tRXTId0
https://arxiv.org/pdf/1811.12740.pdf

Anais Urlichs​ ​ ​ ​ ​ ​ ​ ​ Scalability Solutions

●​ The security and decentralisation of a public ledger depends to some extent on the
number of verifier nodes that participate in its consensus protocol.

●​ While Layer 1 scaling solutions aim to preserve the security provided by the main
chain by keeping the network together as much as possible, Layer 2 scaling solutions
foster direct connections between peers in a network to take transaction off chain
until a certain condition is met.

●​ Sharding allows the ledger to operate several chains that are interconnected to
process and append transactions. Many sharded ledgers depend on a beacon chain,
which is responsible to provide cross-shard communication, assign validators and
retrieve snapshots from shards.

●​ While a sharded ledger may not have a main chain or a beacon chain that shards
depend on, side chains are blockchains that are still dependent on the main chain.
Overall, the ledger may have a main chain, which processes all transactions like a
normal chain but then has several chains running in parallel.

●​ Plasma is built on a Plasma smart contract that runs on the main chain. A Plasma
smart contract provides the access to a side chain, called the child chain. Each child
chain may reference additional child chains within.

●​ State Channels are not separate blockchains such as described earlier. Instead, a
predefined number of participants enter into the payment channel through a smart
contract on the main chain. It does also allow participants to interact with each other
on dApps.

●​ Raiden Networks are payment channels that connect multiple nodes with each other
to transact value.

