
Graph Store Proposal
~2020.06.15
Logan Allen

Demo

Rationale
Graph Store is a continuation of the store / hook model, but iterates on the model by moving
away from a proliferation of application-specific stores. Instead, Graph Store seeks to be an
example of a consistent, strongly validated, interoperable data storage format that can reduce
the amount of bespoke application code by about 6000 lines in /app, enable faster iteration
time by the Interface team, and reify Airlock by allowing client developers to write a variety of
performant, flexible applications for Urbit without a need to write Hoon.

Architecture

A review of current app architectures, their strengths and weaknesses, and how Graph Store
iterates on the existing models:

How does Publish work?

As an experiment, Publish explores how to build Gall applications that orient their entire data
flow around writing data into Clay and reading data out of Clay.

Publish has a container data structure called a notebook, which is represented by a folder within
Clay and a metadata file. A notebook stores metadata about the posts within it, and has
subfolders that each contain a body text file and a folder of comments.

Publish is novel in that no other applications have attempted to heavily utilize Clay to the same
degree. As a result, Publish makes Unix text editing and data export into first class flows, a
unique property amongst current Urbit applications, as well as storing data in a consistent and
interoperable format. Weaknesses of Publish are that its dependence for all its life cycles on
Clay introduces asynchronicity, performance consequences, extra parsing steps, and less
flexible data queries.

Publish as a singular monolithic application does not utilize the store / hook model, as it uses
Clay as its data store, and includes all of the logic and wrappers for Clay interactions as well as
all networking logic in a singular agent.

https://drive.google.com/file/d/15BEL5JrC7ACdfdHh3iXmtNIJRa97-7Kr/view?usp=sharing


The lifecycle of a new Publish post is as follows:
- Receive post poke
- Write file to Clay (asynchronous)
- Read file out of clay (asynchronous)
- Parse file
- Process effects of new post (send diffs)
- Parse effects into JSON for web UI

How does Chat work?

Chat was the first application experiment with the store / hook model. The primary rationale of
the store / hook experiment was to reduce complexity within applications by allowing a store
agent to function as a reactively queryable database table, and a hook agent to handle network
events and replication. As this architecture model was experimental at the time, the data
structures within chat were made as simple as possible to act as a pure test of the model.

Chat uses Gall agent state as its data storage model, and has a container data structure called
a mailbox, which is a tuple within a map of unique identifiers to mailboxes. The tuple contains a
list of envelopes, which are messages.

Strengths of this model are that it is simple to reason about and has close to optimal
performance characteristics. Weaknesses have been that data export would require bespoke
tooling built within the application and data is stored in an application-specific data structure
which encourages the proliferation of more bespoke state machines for applications as opposed
to storing data in legible and consistently interoperable formats.

A weakness of the chat design is that in optimizing for simplicity, it does no data validation in its
replication scheme. This has led to issues in which messages can be dropped or duplicated in
edge cases such as during complex OTAs. The chat data structure is append-only, and does not
allow insertion of envelopes at arbitrary indices. This has led to an increased complexity within
the Chat CLI which seeks to preserve the feature of being able to view particular messages by
index in a long-form terminal reader and thus expects a stronger ordering guarantee than the
Chat Store provides.

The lifecycle of a chat message is as follows:
- Receive post poke
- Save in Gall state
- Process effects of new post (send diffs)
- Parse effects into JSON for web UI

How does the Graph Store work?

https://docs.google.com/document/d/1hS_UuResG1S4j49_H-aSshoTOROKBnGoJAaRgOipf54/edit?usp=sharing


Graph Store is a continuation of the store / hook model, but iterates on the model by moving
away from a proliferation of application-specific stores. Instead, Graph Store seeks to be an
example of a consistent, strongly validated, interoperable data storage format that is primarily
informed by the traits of the data being stored.

Graph Store uses Gall agent state as its data storage model, and has a container data structure
called a graph, which is an ordered map within a map of unique identifiers to graphs.

The graph, an ordered map, contains nodes. Simplified a bit for brevity, a node is:
+$ node [=post children=(unit graph)]

This allows for infinitely recursive children, which could occupy different semantics within
different applications (annotations on a book at a particular page, comments on a blog, etc).
Thus, a graph is in fact a tree, in which each child has a singular parent. As an aside, children
may reference any node at any index the graph, including parents, but the graph data structure
is best thought of as a tree rather than a fully unconstrained graph with fully realized cycles.

Graph Store primarily follows as an iteration of Chat’s model that attempts to drastically improve
the expressiveness of the data structure to rival the best parts of Publish. Graph Store retains
the promising performance characteristics of Chat by utilizing Gall agent state and the ordered
map structure, which provides ~O(2 * log n) subset retrieval, O(log n) item retrieval, and O(log
n) insertion. With Liam’s data export work, one of the main weaknesses of Chat is resolved, in
that data export can be consistently performed without bespoke application code to support it.

With the Graph Store, additional agent data stores will only be necessary for configuration
details, “table joins”, or for queryable structures that have vastly different characteristics than
most social media we interact with today. As an aside, one can imagine an eventual desire for a
SQL-like relational store, or a DAG store in the future.

Graph Store implements strong, flexible validation upon graph shape using the mark system,
allowing one to specify a mark that constrains the data allowed into their graph.

Graph Store solves Chat’s lack of strong-ordering semantics via its ordered map structure, and
includes strong validation on data within graphs by storing a hash of the parent node of a child,
the contents of a post, the author, the time sent, and signing that data with the private key of the
authoring ship.

The lifecycle of a post to a graph is as follows:
- Receive post poke
- Validate contents of post
- Save in Gall state
- Process effects of new post (send diffs)



- Parse effects into JSON for web UI

Performance Tests

Expectations: chat is marginally faster than graph and both chat and graph are significantly
faster than publish

Remember to put manual graph poke parsing into gall for the duration of tests for a true
comparison (or remove the chat and publish hack)

Tests:
- How long does an event to process a new post take? (without the Ford hack for faster

build time but *with* a +poke-json to optimize performance)

- How long does it take to load a truncated chat inbox when chat has 20 chatrooms and
10,000 messages per room?

- How long does it take to load a truncated graph page when there are 20 graphs and
10,000 messages per graph?

- How long does it take Publish to load when there are 20 blogs and 10,000 posts per
blog?

Integration Plan



Phase One:
1. Write Post as new standalone microblogging product that has much of the same

functionality as Publish.
2. Test and polish.
3. Release OTA
4. Solve any bugs that come up.

Phase Two:
1. Write migration scripts for Chat, Links, and Publish to migrate data into graph and set a

flag to stop accepting new pokes and for their hooks to stop accepting updates.
2. Transition Chat, Links, and Publish interfaces to check if data has been migrated to

graph yet and if not say “please run script to migrate data
3. Transition chat-cli to work with graphs and stop storing posts.
4. Set up tracking instead of sync for OTAs and auto-migrate any remaining data.
5. Release OTA.

Eventually:
- Write a “graph cli” for users to write posts, replies, view posts, etc. Do not store any

posts within it. Allow seeing parents of posts, posts and replies, and to turn “update
printing” in the CLI on or off


