«concurrent mode failure» in GC logs - can cause several seconds “stop the world”
pauses even on relatively small heaps (600mb). Happens because there is no space
in old generation to promote objects from young generation. But in that case
defragmentation doesn’t maked
“promotion failed” in GC logs means that old generation is too fragmented. Can
cause huge pauses (28 seconds for 700mb heap). GC stops the world and makes
full GC and defragmentation
CMSinitiatingOccupancyFraction and UseCMSInitiatingOccupancyOnly
ConcGCThreads
CMSPermGenSweepingEnabled, CMSiInitiatingPermOccupancyFraction and
CMSClassUnloadingEnabled
G1 has 3 kind of GC
o Young GC
o Normal G1 cycle: collect garbage and detect old generation regions which are
consist mostly from garbage
o Mixed G1 cycle: same as normal but also compact few old generation regions
market as “mostly garbage”
o FullGC
G1 switch to full GC in case of
o Concurrent mode failure: G1 start marking cycle, but old generation fills up
before cycle is complete
Promotion failure: old generation fills up during mixed GC
Evacuation failure: both survivor space and old generation fills up during
young GC
o Humongous allocation failure: application allocate very large objects
There usually one normal (concurrent) GC and 8mixed GC. Next concurrent GC can
not be started until all segments marked as “garbage” are cleaned up. Segment
marked as garbage if it has more than 35% of garbage. After that each next mixed
GC process Vs part of garbage segments. It can be tuned by
-XX:G1MixedGCCountTarget
Young generation is divided into two survival spaces(0 and 1) and eden
During first GC objects moved from eden into survival 0, during next GC objects from
eden and survival 0 moved into survival 1. At that point eden and survival 0 spaces
are absolutely empty. During next GC objects from eden and survival 1 all moved into
survival 0. Objects promoted to old generation if there are no space left in target
survival space or if objects “survived” during some number of GC(tenuring threshold)
The share of young generation allocated for survival space can significantly affect
GC behavior. By default 10% of young generation is allocated for survival space
Tenuring threshold is automatically calculated by GC. Something between 7 and 15
TLAB - thread local allocation buffer. JVM has TLAB for every application thread and
by default every object is allocated in TLAB. TLAB is a segment of eden. Once TLAB
is full JVM allocates new TLAB for a thread.
-XX:TLABSize=n default TLAB size, -XX:-ResizeTLAB -disable TLAB resizing. By
default TLAB size calculated dynamically based on the eden size



“‘Refill waste” is 1% of TLAB size by default(+XX:TLABWastePercent) If object can
not be allocated at TLAB and object size bigger than refill waste than it will be
allocated at global heap. If it smaller than new TLAB will be allocated. Every time
new object allocated at global heap instead of TLAB, refill waste is increased by
-XX:TLABWastelncrement. It also cause TLAB size increase
If object so big so it can not be allocated in eden it will be allocated at old generation
Java out of memory exception
o Out of native memory
o Out of perm gen memory
m Because of too many classes
m Because when new version of app deployed old class loader is not
unloaded
o Out of heap
m Because live dataset is too big
m Because of memory leaks
e mat can compare two heap dumps
o -XX:HeapDumpOnOutOfMemoryError
o GC overhead limit is reached
Overhead of an Java Object is 8byte for 32-bit JVM and 16 byte for 64-bit JVM
Array header is 16 byte for 32-bit JVM and 24 byte in 64-bit JVM with big heap(more
than 32GB)
Object sizes always 8-byte aligned
Use lazy initialization to save memory
Use canonical objects where possible
Use string interning. Use Eclipse Memory Analyzer to identify strings which should be
interned
Hash table used for string interning can hold only 60k string. After 30k strings hash
collisions are likely to happen -XX:StringTableSize=N
GC time depends much more on live dataset size than on heap size
Object pooling is unfriendly to GC. Java Beans is build around the notion of object
pool
Soft references essentially is one big LRU pool of objects
Performance of WeakHashMap is unpredictable, because on every access
WeakHashMap have to process weak reference queue
You should avoid using Finalizers because:
o Of GC impact (you need at least two GC cycles to free up object with finalizer
o Possible memory leak: If in finalizer method you will create another hard
reference on cleaner object it will never be freed
Use weak reference or PhantomReference instead of finalizers
jcmd VM.native_memory baseline and jcmd VM.native_memory summary.diff
compare memory usage
-XX:+UselLargePages enable huge pages support in JVM. Do not use this flag if
transparent huge pages are enabled. It works only with traditional huge pages
Pointer compression is enabled if heap size less than 32 GB
ForkJoinPool



In java 8 common ForkJoinPool has been introduced.
-Djava.util.concurrent.ForkJoinPool.common.parallelism=N
Amdahl’s law
JRE HesaBHO obecneunBaeT cMHXpoHM3aumio goctyna K volatile nepemeHHbIM. Ho 310
KacaeTcs TonbKo onepaumin YyteHns un 3anucn. K npumepy nHkpeMeHT volatile
NnepeMeHHON yxxe He ABNAETCS NOTOKO-6e30nacHbIM
False sharing
Biased locking enabled by default, can try -XX:-UseBiasedLocking
Jconsole
Java use UTF-16 encoding internally
JVM Flags
AggressiveOpts
AutoFill
AutoBoxCacheMax
OptimizeStringConcat
PrintCompilation
InitialCodeCacheSize
-XX:+PrintFlagsFinal
MaxFreqlnLineSize
MaxInlineSize
DoEscapeAnalysis
+PrintGC
+PrintGCDetails
+PrintGCTimeStamps
+PrintGCDateStamps
-XX:+PrintAdaptiveSizePolicy
-XX:PrintNMStatistics
-XX:NativeMemoryTracking=detail you can get into about native memory
allocation at any time with jemd process_id VM.native_memory summary
-XX:+PrintStringTableStatistics
-XX:+PrintTenuringDistribution - norrmposatb MHOPMaLMIO MO CTAaTUCTUKE
BbPKMBaHMS 06bEKTOB
-XX:+PrintTLAB - monitor TLAB allocation
-XX:MaxGCPauseMills=N. Applied to both old and young generations. Too
small value cause heap size to be small and cause a lot of GC cycles
Tools for Java performance analysis:
o JFR(java flight recorder)
o Java Mission Control
o Oracle Solaris analyzer studio,
o jstack
o jemd
o NetBeans profiler
O
O
O
O

o 0 o 0o o o 0o oo o 0O o 0o O O o o

jstat

jinfo

jvisualvm

eclipse memory analyzer,



C1/C2 JIT compillers,

5 level of compilation

Use GC Histogram to parse GC log and draw charts, jstat

If more than one JVM run on the same server, than number of GC threads needs to
be adopted. Every JVM assumes that it can consume all CPU available at server.
TODO: read about class loaders and information stored in metaspace.

jmap -permstat, -clstatsq

Set heap size, so after full GC only 30% of the heap should be in use. Young
generation- 30% of the total heap size

During Stop the world GC, GC will drive CPU usage to 100%

CMS garbage collector: stop the world during minor GC, scan old generation in
background. No defragmentation in background. If no enough CPU available for
background GC, it's switching to serial GC(stop the world GC of old generation)

G1 is like CMS GC, but split memory into multiple regions(multiple young generations
and multiple old generation). Minor GC are still stop the world, old generation GC are
in background. Less suffering from old generation fragmentation because can copy
one old generation region into another one.



