
Usability of Programming Languages
Special Interest Group (SIG) meeting at CHI’2016
(see also: www.programminglanguageusability.org)
Notes taken at the SIG Meeting

Table of Contents
Articles, papers, blogs, and other references that Report on the Usability of Programming
Languages (with full citations and hyperlinks)
What is Known about programming language usability as a result of those studies
Methods that can help with Programming Language Usability
What Needs to be Studied?
Community challenges to address:
People Interested:

A.Articles, papers, blogs, and other references that Report on
the Usability of Programming Languages (with full citations
and hyperlinks)

Entries in the following sections can refer to these references (just “Insert” a “Bookmark” into the
start of the reference, and you can cross reference it below using “Insert” “Link…” “Bookmark”).

1. Brad A. Myers, Andrew J. Ko, Thomas D. LaToza, and YoungSeok Yoon. "Developers
are Users Too: Human Centered Methods to Improve Software Development," IEEE
Computer, Special issue on UI Design, accepted for publication in vol.49, issue 7, July,
2016. preprint pdf

2. John F. Pane, Chotirat "Ann" Ratanamahatana, and Brad A. Myers, "Studying the
Language and Structure in Non-Programmers' Solutions to Programming
Problems",International Journal of Human-Computer Studies (IJHCS). Special Issue on
Empirical Studies of Programmers, vol. 54, no. 2, February 2001, pp. 237-264.
http://www.cs.cmu.edu/~pane/IJHCS.html

3. J.F. Pane, B.A. Myers, and L.B. Miller, "Using HCI Techniques to Design a More Usable
Programming System," 2002 IEEE Symposia on Human Centric Computing Languages
and Environments (HCC'2002). Arlington, VA, September 3-6, 2002. pp. 198-206.
http://www.cs.cmu.edu/~pane/handsdesign.html

http://www.programminglanguageusability.org
http://www.cs.cmu.edu/~natprog/papers/HCI%20in%20Tools%20Lifecycle%20-%20IEEE%20Comp%20PrePrint.pdf
http://www.cs.cmu.edu/~pane/IJHCS.html
http://www.cs.cmu.edu/~pane/handsdesign.html


4. John Pane and Brad Myers, "Tabular and Textual Methods for Selecting Objects from a
Group," IEEE Symposium on Visual Languages, VL'2000, Seattle, Washington,
September 10-14, 2000. pp. 157-164. html and local pdf

5. John Pane and Brad Myers. Usability Issues in the Design of Novice Programming
Systems, Carnegie Mellon University School of Computer Science Technical Report
CMU-CS-96-132. and Human Computer Interaction Institute Technical Report
CMU-HCII-96-101, August, 1996. http://www.cs.cmu.edu/~pane/cmu-cs-96-132.html
http://reports-archive.adm.cs.cmu.edu/anon/1996/CMU-CS-96-132.ps

6. Mary Beth Kery, Claire Le Goues, Brad A. Myers, "Examining Programmer Practices for
Locally Handling Exceptions", Mining Software Repositories (MSR'2016) Mining
Challenge Track, Austin, TX, USA, 14-15 May, 2016. To appear.

7. Christopher Bogart, Margaret Burnett, Scott Douglass, Rachel White, Hannah Adams,
“Designing a debugging interaction language: An initial case study in Natural
Programming Plus”, ACM Conference on Human Factors in Computing Systems (CHI),
May 2012, pp. 2469-2478. local pdf

8. Christopher Bogart, Margaret Burnett, Allen Cypher, and Christopher Scaffidi, End-User
Programming in the Wild: A Field Study of CoScripter Scripts, IEEE Symposium on
Visual Languages and Human-Centric Computing, Herrsching am Ammersee, Germany,
Sept. 2008, pp. 39-46. local pdf

9. E. M. Wilcox, J. W. Atwood, M. M. Burnett, J. J. Cadiz, C. R. Cook, Does Continuous
Visual Feedback Aid Debugging in Direct-Manipulation Programming Systems?, ACM
Proceedings CHI'97: Human Factors in Computing Sysntems, Atlanta, GA, 258-265,
Mar. 22-27, 1997. html

10. Sherry Yang, Margaret Burnett, Elyon DeKoven, and Moshe Zloof, Representation
Design Benchmarks: A Design-Time Aid for VPL Navigable Static Representations,
Journal of Visual Languages and Computing, Oct/Dec 1997, 563-599. local pdf

11. Jason Dagit, Joseph Lawrance, Christoph Neumann, Margaret Burnett, Ronald Metoyer,
and Sam Adams, Using Cognitive Dimensions: Advice from the Trenches, Journal of
Visual Languages and Computing 17(4), 302-327, August 2006. local pdf

12. Okon, Hanenberg, Can We Enforce a Benefit for Dynamically Typed Languages in
Comparison to Statically Typed Ones? A Controlled Experiment, ICPC 2016

13. Fischer, Hanenberg, An Empirical Investigation of the Effects of Type Systems and
Code Completion on API Usability using TypeScript and JavaScript in MS Visual
Studio, DLS 2015 [link]

14. Endrikat, Hanenberg, Robbes, Stefik, How do API documentation and static typing affect
API usability?, ICSE 2014 [link]

15. Petersen, Hanenberg, Robbes, An empirical comparison of static and dynamic type
systems on API usage in the presence of an IDE: Java vs. groovy with eclipse, ICPC
2014 [link]

16. Spiza, Hanenberg, Type names without static type checking already improve the
usability of APIs (as long as the type names are correct): an empirical study, AOSD 2014
[link]

http://www.cs.cmu.edu/~pane/VL2000.html
http://www.cs.cmu.edu/~pane/cmu-cs-96-132.html
http://reports-archive.adm.cs.cmu.edu/anon/1996/CMU-CS-96-132.ps
http://2016.msrconf.org/#/home
ftp://ftp.cs.orst.edu/pub/burnett/chi12-natProgPlus.pdf
ftp://ftp.cs.orst.edu/pub/burnett/vlhcc08-coscripterstudy.pdf
http://www.eecs.oregonstate.edu/~burnett/Liveness/livenessPaper.htm
ftp://ftp.cs.orst.edu/pub/burnett/repBench.JVLC.OctDec97.pdf
ftp://ftp.cs.orst.edu/pub/burnett/jvlc-cdpaper-2006.pdf
http://dx.doi.org/10.1145/2816707.2816720
http://dx.doi.org/10.1145/2568225.2568299
http://dx.doi.org/10.1145/2597008.2597152
http://dx.doi.org/10.1145/2577080.2577098


17. Hanenberg, Kleinschmager, S.Robbes, R.Tanter, Stefik: An empirical study on the
impact of static typing on software maintainability, ESE 2014 [link]

18. Hoppe, Hanenberg: Do developers benefit from generic types? An empirical comparison
of generic and raw types in Java, OOPSLA 2013 [link]

19. Kleinschmager, Hanenberg, Robbes, Tanter, Stefik: Do static type systems improve the
maintainability of software systems? An empirical study. ICPC 2012 [link]

20.Mayer, Hanenberg, Robbes, Tanter, Stefik: An empirical study of the influence of static
type systems on the usability of undocumented software. OOPSLA 2012 [link]

21. Hanenberg, S., “A chronological experience report from an initial experiment series on
static type systems,” ESCOT 2011 [link]

22. Stuchlik, Hanenberg: Static vs. dynamic type systems: An empirical study about the
relationship between type casts and development time. DLS 2011 [link]

23. Hanenberg: Doubts about the Positive Impact of Static Type Systems on Programming
Tasks in Single Developer Projects - An Empirical Study. ECOOP 2010 [link]

24. Hanenberg: An experiment about static and dynamic type systems: doubts about the
positive impact of static type systems on development time. OOPSLA 2010 [link]

25. Hanenberg,What is the Impact of Static Type Systems on Programming Time?
Preliminary Empirical Results. PLATEAU 2009 [link]

26. Dan Luu. Static vs. dynamic languages: a literature review. Blog post.
http://danluu.com/empirical-pl/ [Discussed on Lambda the Ultimate in November 2015.
http://lambda-the-ultimate.org/node/5286]

27. Weintrop, D. & Wilensky, U. (2015). Using Commutative Assessments to Compare
Conceptual Understanding in Blocks-based and Text-based Programs, ICER’15 [link]

28. Weintrop, D. & Wilensky, U. (2015). To Block or not to Block, That is the Question:
Students’ Perceptions of Blocks-based Programming. In Proceedings of the 14th
International Conference on Interaction Design and Children. New York, NY, USA: ACM.
[link]

29. Weintrop, D. & Wilensky, U. (2017). Comparing Blocks-based and Text-based
Programming in High School Computer Science Classrooms. Transactions on
Computing Education (TOCE), 18(1), 1-25. [link]

30. Michael Coblenz, Joshua Sunshine, Jonathan Aldrich, Brad Myers, Sam Weber, and
Forrest Shull. "Exploring Language Support for Immutability." The 38th International
Conference on Software Engineering (ICSE 2016), Austin, TX, May 14 - 22, 2016.

31. Michael Coblenz, Jonathan Aldrich, Brad Myers and Josh Sunshine. "Considering
Productivity Effects of Explicit Type Declarations", The Fifth Workshop on Evaluation and
Usability of Programming Languages and Tools (PLATEAU 2014), at SPLASH 2014, 21
Oct 2014, Portland, OR

32. Dimitar Asenov and Otmar Hilliges and Peter Müller: “The Effect of Richer Visualizations
on Code Comprehension” CHI `16 [link]

33. Leonel Morales Diaz: “Programming Languages as User Interfaces” MexIHC’10
Proceedings of the 3rd Mexican Workshop on Human Computer Interaction, 2010 [link]

34. Paul Graham, “Hackers and Painters”, essay, May 2003, [link]

http://link.springer.com/article/10.1007/s10664-013-9289-1
http://dx.doi.org/10.1145/2544173.2509528
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6240483
http://dx.doi.org/10.1145/2398857.2384666
http://www.les.inf.puc-rio.br/opus/escot2011/files/07_escot2011.pdf
http://dx.doi.org/10.1145/2168696.2047861
http://link.springer.com/chapter/10.1007%2F978-3-642-14107-2_14
http://dx.doi.org/10.1145/1932682.1869462
http://ecs.victoria.ac.nz/foswiki/pub/Events/PLATEAU/2009Program/plateau09-hanenberg.pdf
http://danluu.com/empirical-pl/
http://lambda-the-ultimate.org/node/5286
http://dweintrop.github.io/papers/Weintrop_Wilensky_ICER_2015.pdf
http://dweintrop.github.io/papers/Weintrop_Wilensky_IDC_2015.pdf
http://www.terpconnect.umd.edu/~weintrop/papers/Weintrop_Wilensky_TOCE_2017.pdf
http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=AsenovHilligesMueller16.pdf
http://dl.acm.org/citation.cfm?id=1978717
http://www.paulgraham.com/hp.html


B.What is Known about programming language usability as a
result of those studies

1. Mental models: in the designer’s mind there is a mental model of the computer or
computational system as a programmable artifact, that model is reflected in the
structures and words used in the language. Programmers form a mental model based on
the structures and words used in the language. Both mental models may or may not
match. Matching of mental models seems to be a desirable feature of programming
languages, is it?

2. Programming languages are designed around a programming paradigm, there are
several, none of which can be proclaimed the “most usable” paradigm. On the other
hand, usability criteria may be “paradigm-dependant” so usability evaluation could make
more sense if programming paradigm is considered.

3. As with the transition from “character-based” user interfaces (CUIs) to GUIs, there is
nowadays an ongoing transition in programming languages from keyboard-typed
languages to block programming (drag and drop). Arguably GUIs never achieved
universal adoption, several CUIs still exist and enjoy popularity in certain contexts. Block
programming will become popular and widely adopted, but as with GUIs, it will never
reach universal adoption. Lessons from CUI-to-GUI transition apply: just because an UI
is graphical it doesn’t mean it is usable, GUIs are not inherently usable, in fact GUIs can
be quite unfriendly.

C.Methods that can help with Programming Language
Usability

For each, list name of method, what it can be used for, references that discuss how it can be
used.

1. Contextual Inquiry field studies
○ To better understand programmers’ real problems
○ Differences between intended use of structures and commands and actual use.

Unexpected, innovative uses can be identified.
2. Natural Programming Elicitation

○ To better understand how the target developers think about the tasks
3. Natural Programming Plus: for language designers who are not HCI experts
4. A/B Testing

○ Comparison of usability of different languages in regard to the codification of a
particular algorithm or solution for a problem



5. Randomized Controlled Trials
○ Performance of programmers solving a problem or coding an algorithm under

different conditions (different programming languages), performance measured
as time to complete, errors and corrections count, number of variables used

6. Cognitive Dimensions of Notations
7. Other Analytical/Predictive methods e.g. Cognitive Walkthrough
8. Representation Design Benchmarks
9. Commutative Assessments (comparing blocks and text syntax)
10. Instrumented tooling/Log analysis
11. Mining software repositories: gather evidence in the context of large-scale software

development
12. Ethnographic studies of End User Programmers
13. Think aloud studies
14. Interviews and surveys
15. Learn from existing GUI application design

○ Many apps are domain-specific
○ What corresponds to Photoshop vs Illustrator vs …?

16. Experimental design templates
17. Power Law of Practise
18. Replication packet (or artifact evaluation as used in PL/SE conferences)

D.What Needs to be Studied?
What in particular needs to be studied? What are parts of programming languages that are
particularly difficult with respect to usability? For each, add sub-bullets about why it is a problem,
and any references substantiating this issue.

1. Error handling
○ Still using the same designs from the beginning of programming - error value

returns and exceptions, which have been shown to be difficult for novices and
experts

○ Paper [Kery 2016] above shows that novices and experts do exception handlers
poorly

2. What can we learn from Cognitive Psychology
○ Are there innate human cognitive abilities, and can they be used to help direct

programming language design
○ Novice vs Expert
○ Anderson - Cognitive Psychology and its Implications

3. Order of teaching programming
○ Look at Matthias Felleisen “How to design programs” and his talk on what he

thinks should be in book 2.

http://evaluate.inf.usi.ch/artifacts


4. Language features instead of whole languages (but, eventually also interaction of
language features)

E. Community challenges to address:
a. We seem to have managed to assemble perhaps the only largely

male-dominated room at CHI. How can we make PL research more equitable
and diverse?

i. Take lessons from universities that are succeeding in attracting female
students into their CS programs, their strategies are applicable here.

b. What causes people to drop out of learning programming, and what can be done
about theses. (variables, loops, higher order functions, recursion)

i. The above question assumes that these features are the cause; why?
ii. First year CS should have numbers on these. These are just what I

anecdotally have seen. (By the way I’m coming from a spreadsheets as
programming background).

c. What should a newcomer read in order to get started on this work and/or join the
community?

F. People Interested:
Please enter your name, affiliation and email, in case we create a Google Group or email list.
<Update from 2018: Nothing has happened since 2016, so any such list is unlikely, but you
might be interested in who is listed as interested in this topic.>

NAME AFFILIATION EMAIL ADDRESS

Brad A. Myers Carnegie Mellon University bam@cs.cmu.edu

Dimitar Asenov ETH Zurich dimitar.asenov@inf.ethz.ch

Gary Miller University of Technology Sydney miller.garym@gmail.com

Margaret Burnett Oregon State University burnett@eecs.oregonstate.edu

Franklyn Turbak Wellesley College fturbak@wellesley.edu

David Weintrop University of Maryland weintrop@umd.edu

Thomas Prokosch University of Innsbruck, Austria thomas-plu@nadev.net

Luke Church University of Cambridge/Google luke@church.name

Michael Coblenz Carnegie Mellon University mcoblenz@cs.cmu.edu



Andrew Head UC Berkeley Andrewhead@berkeley.edu

Lea Verou MIT leaverou@mit.edu

Jun Kato AIST, Japan i@junkato.jp

Poorna Talkad
Sukumar

University of Notre Dame ptalkads@nd.edu

Matt Kulukundis Google - C++ Libraries Team kfm@google.com

Matthias Hauswirth Università della Svizzera italiana Matthias.Hauswirth@gmail.com

Michael Rohs University of Hannover michael.rohs@hci.uni-hannover.de

Molly Feldman Cornell University molly@cs.cornell.edu

Antti-Juhani Kaijanaho University of Jyvaskyla antti-juhani.kaijanaho@jyu.fi

Sandeep K Kuttal University of Tulsa sandeep-kuttal@utulsa.edu

Michelle Ichinco Washington University in St. Louis michelle.ichinco@wustl.edu

Leonel Morales Universidad Francisco Marroquin litomd@ufm.edu

Vinson Chuong Pivotal Labs vinsonchuong@gmail.com

Andrew Macvean Google amacvean@google.com

Parmit Chilana University of Waterloo pchilana@uwaterloo.ca

Amy J. Ko University of Washington ajko@uw.edu

Rohit Ramesh University of Michigan rohitram@umich.edu

YoungSeok Yoon Google youngseokyoon@google.com

Sridhar Chimalakonda International Institute of
Information Technology -
Hyderabad

sridhar_ch@research.iiit.ac.in

Yasaman Sefidgar University of Washington einsian@cs.washington.edu

Meadhbh Hamrick Amazon OhMeadhbh@gmail.com

Harikrishnan G. Atlas Copco AB. hkrish.etr@gmail.com

Gudmund Grov Heriot-Watt University G.Grov@hw.ac.uk

Ramrao Wagh Goa University ramrao@unigoa.ac.in

mailto:Andrewhead@berkeley.edu
mailto:kfm@google.com


Gary Lupyan University of Wisconsin-Madison glupyan@gmail.com

James Evans University of Chicago jevans@uchicago.edu

Claire Kearney-Volpe New York University claire.kv@nyu.edu

Omar Shehab IonQ, Inc. shehab@ionq.co

Jürgen Cito MIT jcito@mit.edu

Alexander Zeier University of Applied Sciences
Darmstadt

alexander.zeier@h-da.de

General Notes:

What is known discussion:

Lyn Turbak:

1. Lots of claims about blocks being easier to use, but not a lot of evidence.
2. Comparisons between text and visual programming could help out sort out the truth

Margaret Burnett:

1. Big fan of diversity, in the context that people are different from one another
2. The gentle slope idea might be helpful
3. In coScripter, there is the "you" construct. You can put it in anywhere, which basically

allows the language to pause. For example, you might use it to "wait" for a web page to
load, which could help people at different ability levels.

Brad:

1. Logical operators are not well understood in programming language
2. The pane study was with children, which may have made an impact

Philip Wadler:

1. Studying functional programming is hard, with studies not being particularly clear on
what the answer is

2. Asking what people likes isn't necessarily a good way to evaluate languages

Amy Ko:

http://www.research.ibm.com/social/projects_coscripter.shtml


1. We should also be looking at how people are taught programing languages

Patrice:

1. Interpreted vs. non-interpreted is an interesting question

Unknown:
1. We might be arguing about the wrong thing. Cognitive dimensions is helpful
2. Others disagree that cognitive dimensions can provide us insight

Methods:

1. One reason why ECMA 6 didn't use evidence is because it takes too long. Same with
C++ 14.

2. We need robust methods that are fast.
3. With expert evaluations, who are the experts? Brad says the methods are designed for

HCI experts to use.
4. One method I think is missing from this list is corpus based methods. With scaling

issues, or with undergraduates, we have to ask how we are going to scale beyond this.
5. Randomized controlled trials are very expensive for this kind of thing - we can use with

other types of evidence such as instrumented tooling to get externally valid evidence.
6. One person is concerned that we haven't used the word taste or aesthetic, but others

seem unconcerned
7. One thing that majorly impacts usability is tools. The semantics of the language impacts

what kind of tooling is possible.
8. Dykstra considered goto harmful, should we try to prove that?
9. Brad says it is difficult to make claims that are truly universal.

What needs to be studied:

1. We need to think about semantics
2. We need to think more about the metrics that could be used

What to do next:
1. Amy Ko: We should do a Dagstuhl
2. We need participation from people in industry
3. We need to think about what the right "order" is for teaching programming language

constructs
4. We need a book on what tradeoffs exist and why they are important.
5. Should we look outside of our community to help --- perhaps the computer science

education community, but also perhaps psychologists

https://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/


6. This is a large community with immature tools. A nice outcome might be a larger
collaborative project on the topic.

Mat Kulukundis:

1. C++ Reading team with about 150 engineers. They might be able to take surveys and
such.

2. Might be able to collaborate with some of the folks working on Go/Google
3. Fibers is a Go-like C++ interface for concurrency

Carl:

Inconsistency Robustness - Name of the book

Give or take straw poll (Rough, Stefik could not immediately get an accurate count):
75% academia
25% industry


