
Gravity Homework​
(Solution steps below) 

  
1.​ Two 25 kg  point masses are placed in a coordinate plane that is marked off in meters, one at (0, 4), and 

other at (3, 1). What should be the coordinates of a 40 kg mass so that the gravitational field at (3, 4) is 
zero? (No other masses are in the vicinity.)  Answer: (5.256, 6.256) 

 
2.​ Clearly describe the Cavendish experiment in your own words: what it accomplished and how it worked.  

Explain why Cavendish needed or didn’t need to know the length of the rod connecting the two small 
masses. 

 
3.​ Planet Gorgonzola orbits at a distance x from its star in a nearly circular orbit, completing a revolution in a 

time  y.  Calculate the mass of the planet and its star, or explain why it is not possible to do so.​
 

4.​ Describe the orbit of a typical comet and explain fully how & why its speed changes. 
 

5.​ Planet Calamari has a mass of  6.21 × 1025 kg and a radius of  8.9 × 106 m.  Calculate: 
a.  the acceleration due to gravity on its surface.              Answer:  52.29 m/s2 

b.  the range of a mango fired horizontally from a 10 m high hill at 500 m/s.          Answer:  309.23 m 
c.  the launch speed necessary so that the mango never lands (that is, goes into orbit).        ​

​      Answer:  21,572.7 m/s ≈ 22,000 m/s 
 

6.​ There are two reasons why Saturn’s period is greater than Jupiter’s. What are they? 
 

7.​ Draw the gravitational field lines (which can be curves) for the two-mass system below.  Hints:  1. The net 
force of gravity at any point is always tangent to the field line at that point.  2. Field lines never cross. 
(Intersecting field lines would mean the net force on the mass is in two different directions at once.) 3. 
Fields have direction! Your field lines should have arrowheads on them. 

 
 
 

 
 
 
        Solution steps: 

1.       It may be helpful to imagine that we’re in outer space, and there is essentially no gravitational 
field from anything except for the two small bodies stated in the problem--perhaps two lonely, dinky 
asteroids. In order to have no gravitational field at the point P = (3, 4), we need to figure out how 
strong and which way the gravitational field is due to the given masses, then place a 40 kg mass in 
an appropriate location, Q, so as to cancel out the field the other two masses produce. Let’s imagine 
an arbitrary mass  m  placed at P.  P happens to be 3 meters from each of the other masses, and 
since they’re each 25 kg, they each exert a force on  m  of  F = G m (25) / 3^2 = (25/9) G m. These 
two forces are perpendicular and their vector sum (let’s call it F1) is down and to the left at a 45 deg 



angle. If you make a picture of this, you’ll see you have a 45-45-90 triangle. Each side is  F, and the 
hypotenuse is  F1 = F sqrt(2) = (25/9) G m sqrt(2). The 40 kg mass must pull just as hard on  m  but 
in the other direction, from an unknown distance  r.  Let’s call this force F2, and we have F2 = G m 
(40) / r^2. In order to cancel each other out, F1 = -F2, and F1 = F2. So, equate them and solve for  r. 
You should get a little over 3 m. Thus Q must be a distance  r  away from P, up and to the right at 45 
deg. The x-coordinate of Q is the x-coord of P + r cos(45 deg). Find the y-coord of Q in a similar 
way. 

2. Check out the slides on the Cavendish experiment. Remember that even a small force can 
produce a large torque if its moment arm is long enough. However, because the universal 
gravitational constant, G, is so small, the force of gravity between two ordinary-sized objects is 
generally itsy bitsy. So, any angular displacement of a hanging rod due to gravitational forces is 
miniscule, even with a very long rod. The longer the rod, the more likely that displacement will be 
measurable.  

3. According to Kepler's third law, the square of the period of a planet is proportional to the cube of 
its mean distance from the sun. That is, T^2 =kR^3, where  k  is a constant of proportionality. For 
circular orbits, this is proven by noting that it is the gravitational force on the planet that provides the 
requisite centripetal force to circle the sun. So,  GMm / R^2 = mv^2 / R, from which we see that  m, 
the planet's mass, cancels. This shows that the orbital speed and period of a planet in a circular 
orbit are independent of its mass. (A speck of dust 93 million miles from the sun will circle it in one 
year, just like earth does.) However the mass of the star does matter. Simplify the equation above by 
cancelling  m  and 1/R. Since the orbit is circular, the speed is constant, so  v = 2 pi R / T, where T is 
the period. Make this substitution and solve for T^2. You should get T^2 = (constant) R^3. The 
constant should contain G and M. You're given the values for T and R in terms of  x  and  y. Solve 
for M  in terms of  x  and  y.  

4. Many comets have very eccentric orbits. This means their orbits, though still elliptical, are far from 
circular. The foci of the ellipse are far apart, almost as far apart as the vertices. The sun, as always, 
is one focus. So, sometimes a comet is very close to the sun, and sometimes it's very far. Draw 
such an ellipse, mark the sun, and put the comet on the ellipse far from the sun but heading toward 
it. Draw the force of gravity (point straight toward the sun). Since the orbit is not circular, the force 
vector is not purely radial. It's also partly tangential. Break the force into components, one tangent to 
the ellipse, and one perpendicular to it. The radial component is the centripetal force, which causes 
the comet to have a curved path. The tangential component should be pointing in the direction of 
motion, and it causes the comet to speed up as it approaches the sun. Now draw the planet just as 
far from the sun but heading away from it. Draw the force vector and its comps. This time you should 
see that the tangential comp is in the opposite direction of motion, slowing the comet down. Finally, 
to illustrate Kepler's second law, from the sun draw two "elliptical sectors" of equal area, one on 
each side of the sun. One should be short and stout, the other long and skinny. Kep’s 2nd law 
asserts equal areas in equal times. On the short, stout sector mark endpoints A and B. Call the 
endpoints of the long, skinny sector C and D. Since the two sectors have the same area, the planet 
should travel from A to B in the same time as from C to D. Notice, though, that C and D are pretty 
close together, meaning the planet moves slowly way out there. This is consistent with our earlier 
analysis involving forces and components.  

5. a.  Weight is, of course, mg. Unlike big G, little  g  is not a universal constant; it's only constant for a 
given planet (and even then it can fluctuate a bit). Weight is the force of gravity, so it can also be 



expressed with Newton's law of gravitation. Equating the two forms yields  mg = GMm / R^2, where M is 
the mass of the planet, R is its radius, and  m  is the mass of some arbitrary object on the planet's 
surface. Since  m  can be canceled, we see that the acceleration due to gravity (a.k.a. the gravitational 
field strength) does not depend on the mass placed in the gravitational field. Rather, it depends only on 
location and the body producing it (the planet). Anyway, you can solve this equation for  g  and plug in the 
given values for  M  and  R. By the way, if you do this with earth's mass and radius, you get 9.8 m/s^2, 
which is consistent with experiment.  
b.  Now that you know  g  for this planet, we just do projectile motion. 500 m/s is pretty fast, but it 
shouldn't be fast enough to account for the fact that the planet is spherical. Recall that when we do 
projectile motion, we are essentially assuming a flat earth, i.e., a uniform gravitational field (constant 
strength with parallel field lines). First find the hang time using the delta  x  equation with  v0 = 0 (since 
there's no initial vertical vel) and  a = -g (using the value from part (a)). Horizontally there is no 
acceleration, so it's just  d = vt.  
c.  In order to circle the planet, a projectile needs a centripetal force. This comes from gravity, and its 
magnitude is known: g.  Centripetal accel = v^2 / R. So, set this equal to  g  and solve for  v. 
  
6. Which planet lies farther from the sun and, hence, must travel a greater distance around it? Also, the 
farther from the sun, the weaker its gravitational field. Remember, gravitational field is measured in N/kg 
(it's force per unit mass). But 1 N/kg = 1 (kg m/s^2) / kg = 1 m/s^2. So gravitational field strength is really 
just acceleration due to gravity. Thus planets further from the sun have less centripetal acceleration. Look 
at the formula for centripetal accel. If it is smaller, what does that mean for speed? 
  
7. Let's begin by looking at the perpendicular bisector of the segment connecting the two masses. Pick 
any point P on it. Since the masses are equal and P is equidistant to each mass, the forces are the same. 
Draw the force vectors. The vector sum (the net force) should lie on the perp. bisector. This would be true 
for any point on the bisector. Recall that at any point the net force is always tangent to the field there. This 
means that one field line is the bisector you've drawn (except for the point halfway between the masses, 
since the force there is zero. Use similar reasoning to find that the line connecting the masses is also a 
field line. The rest are curves. Here's why. First, think about points very close to one of the masses. Here 
the other mass's gravitational influence is negligible, so the field near this mass is as if the mass were 
isolated. An isolated point mass has a field with radial symmetry. Draw fields like this near each mass. 
Farther out, both masses matter. If the radial field lines from one mass continued indefinitely, they'd cross 
those from the other (along with the line that lies on the bisector). This cannot be the case, since 
intersecting field lines would imply two different directions for the net force. Instead, what happens is that 
the field lines begin as radial lines near the masses and then veer off to the outside, as if they're repelling 
each other. Those heading toward the bisector zoom up (or down) toward infinity. The bisector is like a 
vertical asymptote. Lines coming off the left mass veer off to the left, likewise for the right side. To 
understand this better, pick a Q somewhere directly above the left mass. The force on it due to the left 
mass is straight down, and the force on it due to the right mass is toward it--down and to the right. The 
latter force is weaker, due to greater distance, so this vector is shorter. Use the parallelogram method to 
add the vectors. This Fnet vector points somewhere between the other two and shows the direction of the 
field at Q. It should be oriented downward and slightly to the right. Make sure your field line is tangent to 
Fnet at Q. Do you see why the field curves outwards now? Make sure your field lines have arrows on 
them (pointing toward the masses). 
 


