
Message Queue Based Email Archiver

Student Information

Name ​​ ​ : ​ Anirudh Dahiya

Email ​ ​ ​ : ​ anirudhdahiya9@gmail.com

Telephone ​ ​ : ​ +91-9052041894

Time zone ​ ​ : ​ Indian Standard Time (UTC +5:30)

Profiles

IRC (freenode) ​ : ​ spark

Gitlab username ​ : ​ anirudhdahiya9

Instant Messaging ​ : ​ anirudh.dahiya.1 (Facebook)

Alternative Email​ : ​ anirudh.dahiya@research.iiit.ac.in

Personal Blog ​: ​ codefullofsummer.blogspot.com

Educational Information

University ​ ​ : ​ International Institute of Information Technology, Hyderabad

Major ​​ ​ : ​ Bachelors in Computer Science and MS by Research in

Computational Linguistics

Degree ​ ​ : ​ Bachelors in Technology, MS by Research

Current Year ​ ​ : ​ 2nd year

Expected to graduate : ​ May 2019

https://gitlab.com/u/anirudhdahiya9
https://www.facebook.com/anirudh.dahiya.1
http://codefullofsummer.blogspot.com
http://www.iiit.ac.in

Project Details

Proposal Title

Message queue based email archiver

Background

Presently, the archiving system in Mailman core is based on the IArchiver interface from where

the cleared mails are passed on to archivers via different archiver specific methods such as a

simple POST request or an email directly to the archive servers .

Proposal Abstract

As part of the project, I intend to develop a message queue based system pluggable to the

Mailman core archiving interface(IArchiver) which will enable reliable, asynchronous and

multi-client archiving. This will also lead to a more robust distributed architecture while also

expanding the scope of Mailman server allowing it to hook it up to a wide variety of web

applications like static web page generators, event trackers or websockets servers.

Design Specification

From the archive queue, the mail is picked up by the archiver runner which uses the IArchiver

interface to send the mails to archiver based on the archiver specific methods.​

It is here at the IArchiver interface stage that I intend to plugin the message queue system.

The messages then will be pushed by IArchiver to the message queue system via plugins, where

they would be handled by the broker/queuing device to which multiple applications can

connect and receive messages asynchronously.

Proof of Concept

This is a small working model of the message queues implemented between a dummy server

and client. Here we run multiple clients and differ the rate at which they can handle messages

by using sleep functions. The clients irrespective of the rate recieve all the messages. Here I

have also implemented selection based on topics as such filtering currently happens between

mailing lists and archivers its mails are sent to. See Readme.md for more details.​

https://github.com/anirudhdahiya9/prototype-message-queue

Deliverables

The primary deliverable of this project would be the message queue system with an interface to

support multiple backends and message patterns. This can be broken down into the following

parts -

●​ Minimum Viable Product :

This would include a message system implemented with one suitable backend. This

should be able to plugin to IArchiver interface and provide :

​ I : Asynchronous messaging between Mailman server and clients

II : Reliable transfer via acknowledgements or other suitable policies(mentioned below)

●​ Extension of mvp to support multiple backends :

This would enable us to plugin multiple backends and message patterns to the mvp.

●​ Extendable message patterns :

Use the above two to build the complete messaging system. This shall also include

additional features such as persistence (discussed below)

Desirable features

●​ Asynchronous message transfer

As the message queue decouples the archivers and the mailman server, archivers can

accept messages asynchronously at their own pace as they connect.

https://github.com/anirudhdahiya9/prototype-message-queue

●​ Reliability

In case of network problems or client restarts, our system shall be designed to provide

reliability.Though the exact methods are subject to the specific backend and further

investigation, some policies in various backends to ensure reliability include -

1.​ Keeping a specific time window before junking the messages

2.​ Keeping a per subscriber queue with references to the relevant messages

to be received by the subscriber.

3.​ A protocol of sending acknowledgements upon receiving messages on the

subscriber side

●​ Persistence

In the event of broker restart or hardware failures, I intend to use persistence to disk

feature provided by backends like Redis and RabbitMQ to store messages to disk at

specified time intervals. The persisted messages can then be recovered when the broker

restarts.

●​ Support for multiple backends

The system plugin shall not be limited by the choice of backend

●​ Support for multiple message patterns

The system plugin shall not be limited by the choice of specific message pattern design

Since our system further decouples the subscribers and Mailman core, it will go a long way in

making Mailman a robust distributed mailing list management system.

A discussion on some backends investigated

Though the choice of initially included backends may change subject to further investigation

and discussion during the community bonding period, a few backends (open source) which

seem to fit the requirements of the project are -

●​ RabbitMQ - It also offers flexible and customizable routing options between publisher

and message queues. This could be helpful to publish to select subset (based on mailing

list) subscribers listening to our publisher. Also its reliability feature suits the

requirements in our context as it provides both acknowledgements as well as

personalised queues for each subscriber.

●​ ZeroMQ - Unlike others, it can run without a dedicated message broker. It basically

provides web sockets which can be configured to customize message patterns, and can

thus be used to suit specific personal needs. Though highly customizable, it might

require explicit implementation of a few features.

●​ Redis - Though it started with some initial confusion about lack of any reliable way to

message transfer after I approached the redis community for solutions, I subsequently

found quite a nice solution in this blog post. It offers features like persistence to disk and

message reference queues per subscriber, although no approach was found to provide

retryability in case of failure. Thus , it is a lightweight broker system which can be used

to provide reliability.

If the desired goals are met well in time and the timeline allows, the following

tasks shall be attempted :

If the time allows, the idea of adding handlers to the Mailman chains so as to send list events to

archive queue can be tinkered with. These events can then be transferred to the archivers via

the message queue system or directly to archivers via interface IArchiver. This would open

possibilities to developing an activity tracker application.

http://irclogger.com/.redis/2016-03-20
https://davidmarquis.wordpress.com/2013/01/03/reliable-delivery-message-queues-with-redis/

Future scope:

 ​

A variety of web applications which can also listen to mailinglist events such as list creation,

deletion, policy change etc. can be developed and/or hooked up to the mailman. Applications

such as static web page generators and websockets servers can can be hooked onto the

message queue system. Since the system will be designed to be backend extensible, support for

various backends implementing customized message queues can be implemented.

Timeline :

Till 10 May Find out more about Message Patterns and understand

Mailman and Archiver Interface code architecture. Get familiar

with ‘tox’, the testing system.

10 May - 22 May Find out more about the various backends available and

corresponding message patterns supported. Discuss and

finalise various architectural designs for messaging system with

the mentors.

23 May - June 1 Implement plugin for IArchiver supporting multiple backends.

Test the plugin with dummy messaging systems.

June 2 - June 12 Implement a message queue system for a viable backend.

Finish with the minimum viable product.

June 13 - June 19 Write unit tests for the mvp. Ask for community review of the

product. Catch up with any leftover tasks

June 20 - June 27 Code submitted for mid term evaluation. Write basic

documentation for mvp. Reconsider the architecture for

message queues and plugin.

June 28 -July 8 Improvise upon the message queue system based on the

evaluation. Research about additional backends and message

patterns viable for the job.

July 9 - July 25 Discuss and implement more message queuing patterns

suitable. Implement support for suitable alternative backends.

Attempt to incorporate list events into the messaging system.

July 26 - August 1 Refactoring Week. Seek community review for existing product

and design architecture. Write integration tests.

Aug 2 - August 13

Complete any leftover work. Write documentation. Improvise

upon reviews by mentors.Attempt to incorporate extensible

metrics(as mentioned above). Write any tests left(system

testing). Complete any unachieved milestone.

August 14 - August 20 Tidy up code. Complete documentation. Perform rigorous

testing upon system. Submit for final submission.

Work Experience

Past projects:

I am well acquainted with python and C as programming languages and have done many

projects based in these languages. I am also acquainted with websockets and have

implemented an FTP application in python. I have primarily worked on Django as an MVC and

have tried my hands at various aspects of it like authentication, generic views and customised

forms, although I have working knowledge of web2py as well.

Particularly for this project, I’ve been through GNU Mailman architecture, listened to pycon talk

by Barry Warsaw, played with the Mailman core codebase along with relevant portions in

Hyperkitty and fixed issues in Mailman core and Postorius. I have also researched about

message patterns (particularly message queues, pub/sub models and their variants),

investigated various backends (RabbitMQ, ZeroMQ, and Redis) and complete relevant parts of

tutorial for RabbitMQ and ZeroMQ.

Links to select projects : ​

FTP application implemented in python : https://github.com/anirudhdahiya9/File-transfer-app

Tic Tac Toe AI bot : https://github.com/anirudhdahiya9/Tic-Tac-Toe-bot-AI

Django Projects :

https://github.com/anirudhdahiya9/Web-developement-experiments-in-django

Open data Project (Semester project) : https://github.com/anirudhdahiya9/Open-data-projecy

Donkey Kong Game : https://github.com/anirudhdahiya9/donkeykong

Terminal Shell implemented in C : https://github.com/anirudhdahiya9/bash-shell​

Cannon Ball Game (OpenGL GLFW) : https://github.com/anirudhdahiya9/2d-Cannon-Game​

Github Profile for more

https://github.com/anirudhdahiya9/File-transfer-app
https://github.com/anirudhdahiya9/Tic-Tac-Toe-bot-AI
https://github.com/anirudhdahiya9/Web-developement-experiments-in-django
https://github.com/anirudhdahiya9/Open-data-projecy
https://github.com/anirudhdahiya9/donkeykong
https://github.com/anirudhdahiya9/bash-shell
https://github.com/anirudhdahiya9/2d-Cannon-Game
https://github.com/anirudhdahiya9

Interaction with the Mailman community :

I have been active with the GNU Mailman community for more than 2 months at the writing of

this application, and feel confident about the codebase of Mailman core, Postorius and relevant

portions in Hyperkitty. I have also been actively in touch with mentors on IRC. I am thankful for

the warm support extended to me as a newbie into the open source community in the initial

stages of my contribution.

Contributions and MR’s :

A Filter for list index page -

https://gitlab.com/mailman/postorius/merge_requests/107

A fix to block duplicate subscription requests -

https://gitlab.com/mailman/mailman/merge_requests/114

Add already subscribed error to catch Mailman server exception to report meaningful error in

Postorius -

https://gitlab.com/mailman/mailman/merge_requests/112

WORK SCHEDULE RELATED INFORMATION

Other work Commitments :

I do not have any work related commitments during the period.

Expected Work Hours :

https://gitlab.com/mailman/postorius/merge_requests/107
https://gitlab.com/mailman/mailman/merge_requests/114
https://gitlab.com/mailman/mailman/merge_requests/112

I have 24/7 internet access and do not have any work commitments during the summer and

thus , shall be able to devote at least 40 hours of work to the project per week. I shall usually be

able to work between 12 pm to 12 am IST (UTC +5:30).

What days shall you be unable to meet the mentors?​

Since I have no work related commitments, I shall usually be available all week, though I might

take Sunday off at times with prior acknowledgement of the mentors and depending upon the

workload and status of project. In case of unavailability, I can be contacted via email, instant

messaging(Facebook) and the provided contact number.

Have I applied for any other project under any organisation ? ​

No.

	Message Queue Based Email Archiver
	
	Student Information
	Profiles
	Educational Information

	
	
	Project Details
	Proposal Title
	Background
	Proposal Abstract
	
	
	Design Specification
	
	Proof of Concept
	
	Deliverables
	Desirable features
	●​Asynchronous message transfer
	●​Reliability
	●​Persistence
	●​Support for multiple backends
	●​Support for multiple message patterns

	A discussion on some backends investigated
	If the desired goals are met well in time and the timeline allows, the following tasks shall be attempted :
	Future scope:
	Timeline :

	
	Work Experience
	Past projects:
	Interaction with the Mailman community :
	Contributions and MR’s :

	WORK SCHEDULE RELATED INFORMATION

