
Important note: this document is inconsistent regarding to academic
definitions of P and NP sets. Updated version of this document, but without
this inconsistency, can be found here. This document is not deleted for
conversational reasons.

P not equal to NP

Summary: an approach is made by analyzing functions and their
inverses mappings between domains and codomains elements.
Drawn conclusions state that verifying data is an inverse function of
finding solutions to the same problem. Further observation implies
that P is not equal to NP.

"P versus NP" problem is one of the most intriguing problems in science
due to an impact it would make in the world if P equals NP. While I was
working on my new functional language, I decided to think about this
problem in terms of computing functions, and I got some answers. Now, I
can report some good news for bankers and bad news for scientists:

P ≠ NP

Solution to the problem could be seen in analyzing function domains versus
their codomains and inverse functions, while extrapolating conclusions to
function compositions. What does this have to do with solving problem and
verifying solutions? Solving a problem and verifying a solution are actually
two dual sides of the same function, and these dual sides relate as a
function (solving) and its inverse (verifying). This duality can be seen in a

simple example of a function and its inverse. Their semantic 𝑓(𝑥) = 𝑥2

table would look like this:

 or 𝑥 𝑓−1(𝑦) or 𝑓(𝑥) 𝑦

... ...

-2 4

-1 1

0 0

1 1

2 4

... ...

For , we could say: 𝑓

1

https://docs.google.com/document/d/1pTESAkcVjv-08BBrebhbvl1Thf291TSfgZ_EeUlSn8A/edit?usp=sharing
https://en.wikipedia.org/wiki/P_versus_NP_problem

●​ Solving is happening from left to right: it is getting all right-hand
values, according to already known left-hand value.

●​ Verifying is happening from right to left: it is finding corresponding
left-hand value paired with already known right-hand side.

For ​​, we could say exactly the opposite: 𝑓−1

●​ Solving is happening from right to left, and it is analogous (if not the
same) process to verifying 𝑓

●​ Verifying is happening from left to right, and it is analogous (if not
the same) process to solving 𝑓

The only difference between solving and verifying is that in solving we
return all of the answers, while in verifying we check the least of the
answers (possibly all) against expected ones.

As any function (or its inverse) may assign multiple elements to the same
parameters, function solving complexity is directly dependent of the amount
of the assigned elements. More there are assigned elements, more time is
needed to build up a set of solutions, and this is what makes a function (or
its inverse) being a part of P or NP set. Moreover, functions can be
composed, even recursively, like in the example of factorial function. A ratio
between parameters and amount of solutions ranges from constant, over
linear and polynomial, to exponential and even bigger complexity measure.
Readers familiar to functional programming are aware of algorithmic
completeness of using function compositions to form any kind of
computation.

If we consider each function calculation step as a discrete unit of
computation, we can enumerate three possibilities of function complexities:

●​ In a case of 1:N ratio between function domain elements and their
mapped codomain elements, we can say that complexity measure is

, 𝑂
𝐷

(𝑑) + 𝑂
𝐶
(𝑁)

●​ In a case of M:N ratio between function domain elements and their
mapped codomain elements, the complexity is the same as in the
case of 1:N ratio,

●​ In a case of N:1 ratio between function domain elements and their
mapped codomain elements, we can say that complexity measure is

, 𝑂
𝐷

(𝑑) + 𝑂
𝐶
(1)

●​ In a case of 1:1 ratio between function domain elements and their
mapped codomain elements, the complexity is the same as in the
case of N:1 ratio,

where is time needed for comparing function parameters to a domain 𝑂

𝐷

element, is time needed to construct a result, and is a total number of 𝑂
𝐶

𝑑

domain elements. Analyzed function compositions give us compositions of
these complexity functions.

2

The point of this short document is that the relation between two sides of

the same function, a function and its inverse , is being interpreted as 𝑓 𝑓−1

solving and verifying, respectively, and that draws some conclusions which
could formally be written as:

(1) (𝑓 ∈ 𝑃) ↔ (𝑓−1 ∈ 𝑁𝑃)

(2) (𝑓 ∉ 𝑃) ↔ (𝑓−1 ∉ 𝑁𝑃)

(3) (𝑓 ∈ 𝑁𝑃) ↔ (𝑓−1 ∈ 𝑃)

(4) (𝑓 ∉ 𝑁𝑃) ↔ (𝑓−1 ∉ 𝑃)

If we assume that there is such a function that:

(5) (𝑓 ∉ 𝑃)
(6) (𝑓 ∈ 𝑁𝑃)

We can draw the following conclusion:

(from 2 and 5) (𝑓−1 ∉ 𝑁𝑃)

(from 3 and 6) (𝑓−1 ∈ 𝑃)

That changes even the mislead general assumption that every calculation
of verifying should have a simpler complexity than corresponding
calculation of solving, finally concluding that:

 NP 𝑃⊉

Considering all written, and according to the last observation, I propose the
following Venn diagram for P versus NP situation:

Knowing that conclusion will not change the world as 𝑃 ≠ 𝑁𝑃 𝑃 = 𝑁𝑃
would, I wrote this report mostly because of social reasons and my
personal responsibility to report the result. I still didn't decide if this is
generally a good or a bad news to all of us, but I guess we shouldn't look at
things in black and white.

Author: Ivan Vodišek
May, 2017.
Special thanks go to friends from PL Forums for a fruitful conversation.

3

https://plforums.org/misc/p-np-consequences

	P not equal to NP

