
Important note: this document is inconsistent regarding to academic 
definitions of P and NP sets. Updated version of this document, but without 
this inconsistency, can be found here. This document is not deleted for 
conversational reasons. 

P not equal to NP 
 
Summary: an approach is made by analyzing functions and their 
inverses mappings between domains and codomains elements. 
Drawn conclusions state that verifying data is an inverse function of 
finding solutions to the same problem. Further observation implies 
that P is not equal to NP.  
 
"P versus NP" problem is one of the most intriguing problems in science 
due to an impact it would make in the world if P equals NP. While I was 
working on my new functional language, I decided to think about this 
problem in terms of computing functions, and I got some answers. Now, I 
can report some good news for bankers and bad news for scientists: 
 
P ≠ NP 
 
Solution to the problem could be seen in analyzing function domains versus 
their codomains and inverse functions, while extrapolating conclusions to 
function compositions. What does this have to do with solving problem and 
verifying solutions? Solving a problem and verifying a solution are actually 
two dual sides of the same function, and these dual sides relate as a 
function (solving) and its inverse (verifying). This duality can be seen in a 

simple example of a function  and its inverse. Their semantic 𝑓(𝑥) = 𝑥2

table would look like this: 
 

 or  𝑥 𝑓−1(𝑦)  or  𝑓(𝑥) 𝑦

... ... 

-2 4 

-1 1 

0 0 

1 1 

2 4 

... ... 

 
For , we could say: 𝑓
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https://docs.google.com/document/d/1pTESAkcVjv-08BBrebhbvl1Thf291TSfgZ_EeUlSn8A/edit?usp=sharing
https://en.wikipedia.org/wiki/P_versus_NP_problem


●​ Solving is happening from left to right: it is getting all right-hand 
values, according to already known left-hand value. 

●​ Verifying is happening from right to left: it is finding corresponding 
left-hand value paired with already known right-hand side. 

For ​​, we could say exactly the opposite: 𝑓−1

●​ Solving is happening from right to left, and it is analogous (if not the 
same) process to verifying  𝑓

●​ Verifying is happening from left to right, and it is analogous (if not 
the same) process to solving  𝑓

 
The only difference between solving and verifying is that in solving we 
return all of the answers, while in verifying we check the least of the 
answers (possibly all) against expected ones. 
 
As any function (or its inverse) may assign multiple elements to the same 
parameters, function solving complexity is directly dependent of the amount 
of the assigned elements. More there are assigned elements, more time is 
needed to build up a set of solutions, and this is what makes a function (or 
its inverse) being a part of P or NP set. Moreover, functions can be 
composed, even recursively, like in the example of factorial function. A ratio 
between parameters and amount of solutions ranges from constant, over 
linear and polynomial, to exponential and even bigger complexity measure. 
Readers familiar to functional programming are aware of algorithmic 
completeness of using function compositions to form any kind of 
computation. 
 
If we consider each function calculation step as a discrete unit of 
computation, we can enumerate three possibilities of function complexities: 
 

●​ In a case of 1:N ratio between function domain elements and their 
mapped codomain elements, we can say that complexity measure is 

, 𝑂
𝐷

(𝑑) +  𝑂
𝐶
(𝑁)

●​ In a case of M:N ratio between function domain elements and their 
mapped codomain elements, the complexity is the same as in the 
case of 1:N ratio, 

●​ In a case of N:1 ratio between function domain elements and their 
mapped codomain elements, we can say that complexity measure is 

, 𝑂
𝐷

(𝑑) +  𝑂
𝐶
(1)

●​ In a case of 1:1 ratio between function domain elements and their 
mapped codomain elements, the complexity is the same as in the 
case of N:1 ratio, 

 
where is time needed for comparing function parameters to a domain 𝑂

𝐷

element, is time needed to construct a result, and  is a total number of 𝑂
𝐶

𝑑

domain elements. Analyzed function compositions give us compositions of 
these complexity functions. 
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The point of this short document is that the relation between two sides of 

the same function, a function  and its inverse , is being interpreted as 𝑓 𝑓−1

solving and verifying, respectively, and that draws some conclusions which 
could formally be written as: 
 

(1)  (𝑓  ∈ 𝑃) ↔ (𝑓−1 ∈ 𝑁𝑃)

(2)  (𝑓  ∉ 𝑃) ↔ (𝑓−1 ∉ 𝑁𝑃)

(3)  (𝑓  ∈ 𝑁𝑃) ↔ (𝑓−1 ∈ 𝑃)

(4)  (𝑓  ∉ 𝑁𝑃) ↔ (𝑓−1 ∉ 𝑃)
 
If we assume that there is such a function that: 
 
(5)  (𝑓  ∉ 𝑃)
(6)  (𝑓  ∈ 𝑁𝑃)
 
We can draw the following conclusion: 
 

(from 2 and 5)  (𝑓−1 ∉ 𝑁𝑃)

(from 3 and 6)  (𝑓−1 ∈ 𝑃)
 
That changes even the mislead general assumption that every calculation 
of verifying should have a simpler complexity than corresponding 
calculation of solving, finally concluding that: 
 

 NP 𝑃⊉
 
Considering all written, and according to the last observation, I propose the 
following Venn diagram for P versus NP situation: 
 

 
 
Knowing that conclusion will not change the world as  𝑃 ≠ 𝑁𝑃 𝑃 = 𝑁𝑃
would, I wrote this report mostly because of social reasons and my 
personal responsibility to report the result. I still didn't decide if this is 
generally a good or a bad news to all of us, but I guess we shouldn't look at 
things in black and white. 
 
Author: Ivan Vodišek 
May, 2017. 
Special thanks go to friends from PL Forums for a fruitful conversation. 
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