
Tab 1

Types4Strings Project
Ideas

If you are interested in any of these projects or have ideas of your own, please do not hesitate
to contact us! You can send an email to either michael.schroeder@tuwien.ac.at or
juergen.cito@tuwien.ac.at. Please attach a recent course transcript (Sammelzeugnis) so that
we can get an idea of your background.

Regex Visualization Tool
Background

Motivation

Outcomes Web-based tool that interfaces with our `regex-algebra` Haskell library or the
`regex` CLI tool. It should support at least the following operations of the
library/tool:

-​ Checking equality and inclusion of regular expressions, showing
counter-examples in the negative case

-​ Intersection and complement of regular expressions
-​ Simplification of regular expressions
-​ Converting regular expressions between common representations,

e.g., POSIX and PCRE

Approach 1.​ Extend the regex-algebra package or the regex CLI tool to support the
envisioned interactions, if necessary.

mailto:michael.schroeder@tuwien.ac.at
mailto:juerge.cito@tuwien.ac.at

2.​ Implement the web interface to visualize and manipulate regular
expressions in an algebraic fashion.

3.​ Make this tool publicly available. This requires designing a
deployment infrastructure that is both secure and limits resource
usage.

Scope Project in CS

Parser Dataset Annotation Tool
Background Ad hoc parsers are pieces of code that use common string functions like split,

trim, or slice to effectively perform parsing. Ad hoc parsing is ubiquitous—yet
poorly understood. As part of the TYPES4STRINGS project, a number of
research groups are investigating various approaches to analyze these kinds
of parsing programs in various ways. To be able to compare these different
approaches, we are currently compiling a large-scale benchmark dataset of
real-world ad hoc parsers. To be useful as a benchmark, such a dataset must
include not only the ad hoc parser code itself, and various amounts of
metadata, but also, crucially, the ground truth associated with each ad hoc
parser: a regular expression representing the input language that the parser
accepts (if the parser is regular and such an expression exists).

Motivation Manually annotating our vast dataset with ground truth is tedious and
error-prone but ultimately unavoidable. However, we can improve the
annotator’s workflow, and provide some amount of quality assurance, by
providing them with a convenient tool that automates as much as possible.

Outcomes TBD

Approach -​ possible starting point:
https://github.com/ductnguyen12/code-annotation/wiki/Snippet

Scope Project in CS

https://github.com/ductnguyen12/code-annotation/wiki/Snippet

More powerful integer abstract domain for Panini
Status Assigned. If you are interested in a similar project, please write to us

anyway!

Background Abstract interpretation is a way to soundly approximate the semantics of
computer programs. Key to this technique are efficient implementations of
abstract domains, i.e., representations of the potentially infinite sets of values
that variables might assume during possible executions of a program. For
example, the value of x in the expression x > 5 can be abstractly represented
as the infinite interval [6,∞].

Motivation The Panini grammar inference system makes heavy use of abstract
interpretation to infer regular expressions from predicate logic constraints
representing parser programs. It currently uses an interval sequence domain
to represent infinite sets of integers, allowing us to abstract constraints such
as into simpler forms like . However, more 𝑥 > 0 ∧ 𝑥 ≠ 5 𝑥 = [1, 4|6, ∞]
complex constraints, e.g., congruence classes such as x mod 2 = 0, cannot
currently be efficiently abstracted. In the context of grammar inference, this
can lead to under-approximations for certain parsers. Thus, we would like to
extend Panini’s integer abstract domain to cover a larger subset of ℘(ℤ), with
the specific goal to support inference of regular language grammars.

Outcomes A new integer abstract domain for Panini that is strictly more powerful and
enables inference of a larger set of regular languages.

Approach 1.​ Survey the literature on integer abstract domains and related topics
2.​ Determine what (combinations of) domains would be useful for

regular grammar inference
3.​ Implement these domains in Haskell as part of Panini
4.​ Evaluate the domains with detailed case studies

Scope Master Thesis or Project in CS (implementation only)

Panini frontend for JavaScript / TypeScript​
Panini frontend for C​
Panini frontend for Java
Background The Panini grammar inference system is built around a common intermediate

representation of parser programs. Parsers written in high-level source
languages (e.g., Python) are first translated to this common IR, which is then
used to infer the parser’s grammar.

Motivation Adding a new language frontend significantly expands the reach of Panini
and brings its capabilities to a whole new set of users and domains.

Outcomes ●​ A new language frontend for Panini.
●​ A benchmark dataset for Panini in the new language.

Approach 1.​ Familiarize yourself with Panini and the built-in Python frontend.
2.​ Formally define a translation from the source language to Panini. This

includes Panini axiomatizations of the source language’s standard
library functions.

3.​ Implement this translation either in the source language or in Haskell
as part of Panini.

4.​ Evaluate the new frontend on an extensive set of test parsers in the
source language. These should include

a.​ the OOPSLA25 Panini benchmark dataset, translated into the
source language

b.​ New test programs that exercise particular features of the
source language

Scope TBD

Re-implement Panini Python frontend in Python
Background The Panini grammar inference system is built around a common intermediate

representation of parser programs. Parsers written in high-level source
languages (e.g., Python) are first translated to this common IR, which is then

used to infer the parser’s grammar. Currently, Panini’s Python frontend is
implemented in Haskell as part of Panini.

Motivation Implementing the Python frontend in Python could allow us to more easily
and closely track the Python AST and more quickly adapt to changes in new
language versions. It might also make it easier to interface with larger parts of
the Python ecosystem.

Outcomes TBD

Approach TBD

Scope TBD

Modular Panini SMT solver backend
Background The Panini grammar inference system uses the Z3 SMT solver during

refinement type inference.

Motivation We want to improve SMT solving performance, both in terms of runtime and
capabilities.

Outcomes ●​ Modular SMT solver interface in Panini
●​ Seamless switching between solver backends (at least Z3 and CVC5)
●​ Reduced solver overhead through inter-process communication

Approach 1.​ Implement new SMT solver subsystem in Haskell as part of Panini
2.​ Evaluate performance differences and solver capabilities

Scope Project in CS or Bachelor Thesis (with extended evaluation)

Assorted ideas / Miscellania
-​ Take ownership of (or fork) the language-python Haskell package and add support for

the latest Python version

https://hackage.haskell.org/package/language-python

-​ Extend Panini Python frontend to support more syntax (might need Jakob’s extensions
first)

-​ Merge Jakob’s extensions to support datatypes and polymorphism
-​ Extend the regex-algebra library with optional provenance annotations that are

preserved under the various operations and simplifications (provenance calculus?)
-​ Add provenance information throughout the whole Panini pipeline
-​ Panini web interface that makes use of provenance info
-​ Panini VS Code plug-in
-​ Add TreeSitter grammar for the Panini language

	Tab 1
	Types4Strings Project Ideas
	Regex Visualization Tool
	Parser Dataset Annotation Tool
	More powerful integer abstract domain for Panini
	
	Panini frontend for JavaScript / TypeScript​Panini frontend for C​Panini frontend for Java
	
	Re-implement Panini Python frontend in Python
	
	Modular Panini SMT solver backend
	Assorted ideas / Miscellania

