Topic 4: States

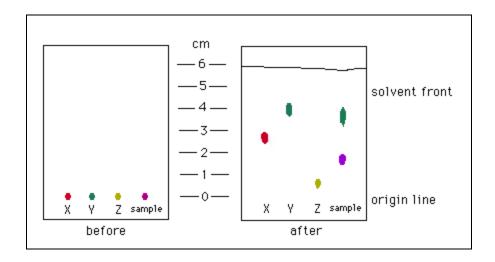
Goals

4.1 - Polarity (p. 60-62)
4.2 - Intermolecular Forces (p. 186-189)
4.3 - States and Solubility (p. 167-203)
4.4 - Synthesis

Date	Homework

Topic 4: States

Practice Test


1. Polarity (4.1)	/ 10
(a) Compare and contrast the polarities of CCl₄ and HCl. Include all partia	I charges when appropriate
(b) Compare and contrast the polarities of CCI_4 and CCI_3H . Include all par appropriate.	tial charges when
(c) Compare and contrast the polarities of $\rm H_2O$ and $\rm BH_3$. Include all partial	charges when appropriate.
(d) Compare and contrast the polarities of O_2 and SO_2 . Include all partial O_2	charges when appropriate.
(e) Compare and contrast the polarities of CO ₂ and CO. Include all partial	charges when appropriate.

2. Intermolecular Forces (4.2)	/10
(a) Draw an interaction diagram between two $\rm H_2O$ molecules. Indicate and label all IMFs.	
(b) Draw an interaction diagram between two CH₄ molecules. Indicate and label all IMFs.	
(c) Draw an interaction diagram between one H_2O molecule one Na^+ ion and one NO_3^- (show structure for NO_3^-).	lewis
(d) Draw an interaction diagram between one NH_3 and one CO molecule. Indicate and label a	all IMFs.
(e) Draw an interaction diagram between one $\rm H_2O$ molecule, one $\rm SO_2$ molecule and one $\rm N_2$ n	nolecule.

3. States and Solubility (4.3)
(a) Justify the below statement using what you know about IMFs.
Water tends to be a liquid where carbon dioxide tends to be a gas at room temperature.
(b) Justify the below statement using what you know about IMFs
Sodium Chloride (Na $^{+}$ Cl $^{+}$ is soluble in ammonia, NH $_3$, but not in hexane, C $_6$ H $_{14}$)
(c) State whether you agree or disagree with the below statement. Justify your answer using what know about IMFs .
It takes more heat energy to boil (convert from liquid to gas) 100 mL of BH $_3$ than 100 mL of PH $_3$.
PH_3 .
PH_3 .
PH_3 .
PH ₃ . (d) . Draw a diagram that depicts the boiling (conversion from liquid to gas) of 4 water molecules. (e) When cooled at a constant rate, which substance will condense (conversion from liquid to solid),
PH ₃ . (d) . Draw a diagram that depicts the boiling (conversion from liquid to gas) of 4 water molecules.

4. Synthesis (4.4) _____/10

It was suspected that a particular mixture contained three components: X, Y and Z. To check this, the mixture was analyzed by thin layer chromatography. In this experiment a nonpolar solvent was used with a polar stationary phase. The following results were obtained:

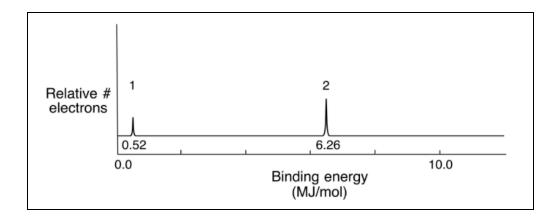
(a) Which suspected components (X, Y or Z) are present in the sample?

(b) Are there other components in the sample?

(c) Which of the suspected components is the most polar? the least polar?

Topic 2: Electrons

Practice Test (solutions)


10

1. Configurations (2.1)	/
(a) Write the electron configuration for the Sulfur atom. Sulfide ion.	
Sulfur, S: $1s^22s^22p^63s^23p^4$ Sulfide, S^{2-} : $s^22s^22p^63s^23p^6$	
(b) Write the electron configuration for the Magnesium atom. Magnesium ion.	
Magnesium, Mg: $1s^22s^22p^63s^2$ Magnesium, Mg ²⁺ : $s^22s^22p^63s^0$	
(c) Write the electron configuration atom for the Chlorine atom. Chloride ion.	
Chlorine, CI: $1s^22s^22p^63s^23p^5$ Chloride, CI: $s^22s^22p^63s^23p^6$	
(d) Write the electron configuration atom for the Potassium atom. Potassium ion.	
Potassium, K: $1s^22s^22p^63s^23p^64s^1$ Potassium, K ⁺ : $s^22s^22p^63s^23p^64s^0$	
(e) Write the electron configuration for the copper atom and the copper (II) ion.	
Copper, Cu: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁹ Copper, Cu ²⁺ : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ⁰ 3d ⁹	
2. Magnetism (2.2) /10	
(a) Indicate a nonmetal that is magnetic and a nonmetal that is not magnetic. Explain.	
Magnetic: Nitrogen. Paramagnetic (unpaired electrons) Not Magnetic: Neon. Diamagnetic (no unpaired electrons)	
(b) Indicate a metal that is magnetic and a metal that is not magnetic. Explain.	

Magnetic: Iron. Paramagnetic (unpaired electrons) Not Magnetic: Neon. Zinc (no unpaired electrons)

(c) Would steel (iron & carbon) or cobalt make for a better magnetic refrigerator door? Explain.		
Steel: More paramagnetic (More unpaired electrons)		
d) Which element, nitrogen or oxygen, would be pulled more towards a magnetic	field? Explain.	
Nitrogen: More paramagnetic (More unpaired electrons)		
e) Which element, magnesium or aluminum would be pulled more towards a mag	gnetic field? Explain.	
Aluminum: More paramagnetic (More unpaired electrons)		
3. PES (2.3)	/10	
a). On the axis below, provide the PES diagrams for O and Ne.		
Ne is shifted more towards the higher "Binding Energy".		
b). On the axis below, provide the PES diagrams for Mg and Al		
Al is shifted more towards the higher "Binding Energy".		
c) . On the axis below, provide the PES diagrams for Si and Al		
Al is shifted more towards the higher "Binding Energy".		
d). Si and C		
C is shifted more towards the higher "Binding Energy".		
e) On the axis below, provide the PES diagrams for Al and Ar		
C is shifted more towards the higher "Binding Energy".		

The remains of an unknown element "X" are gathered from the scene of a crime. In an attempt to determine the identity of the element, Photoelectron Spectra (PES) data is gathered. The resulting spectra is shown below.

(a) What is the identity of element "X".

Li

(b) Is element "X" Paramagnetic or Diamagnetic? Explain.

Paramagnetic. It has an unpaired electron.

(c) What charge does the ion of element X form?

1+

(d) Is the the atom or ion of element pulled more towards a magnetic field? Explain.

Atom. Ion has no unpaired electrons.

Day 6 (Synthesis-4.4)

1. Warm	Up
---------	----

2. Activity
a) Procedure

b)	Data	
-,		
c)	Criminal	
3. Hom	ework	
a)		
1		

b)		

Day 5

(States and Solubility-4.3)

•	Warm Up

2. Activity

b) Chromatography Drawings

Sharpie Pen	Expo	Crayola	Tatoo	Bic

Based on your drawings above, which pen has the most polar pigments? The least? Cl plain (hint: in each "run" water is the solvent).	early

3. Homework 1. 2. 3. 4.

Day 1

(Introduction)

Warm Up

4
1.
2.
3.
Partial Positive ()
Partial Negative ()
<u>Example</u>

Activity

Part I: Brown Sand

Instructions

- 1. Investigate how the dry brown sand.
- 2. Investigate how the brown sand in interacts with H₂O.
- 3. Take pictures and record observations below (Words & Diagram)

Words	Diagram

Part II: Blue Sand

Instructions

- 1. Investigate how the blue brown sand.
- 2. Investigate how the blue sand in interacts with H₂O.
- 3. Take pictures and record observations below (Words & Diagram)

Words	Diagram

	<i>ctions</i> After v	vatching	the vide	os, list sc	ome pote	ntial, tanç	gible appl	ications o	f "Blue Sa	ınd" belo	W.

Part IV: Behavior Hypothesis

Part III: Video Sand

Instructions

• Using what you know about water, provide a hypothesis that explains, on a molecular level, the respective behaviors of "Brown" and "Blue" sand with water.

Day 2 (Polary-4.1)

1. Demo	•	,	,		
2. Warm Up					
	Static Rod vs. Water			Static Rod vs. Hexane	

3. Activity

Notes

<u>Polar (</u>)
1.	
2.	
3.	
J.	
Nonpolar (
1.	
2.	
- .	
3.	
. J.	

Intermolecular Forces (IMFs)	
<u>*Dipole - Dipole</u> ()
*London Dispersion ()

Practice

Moolecule	Polarity	IMF Diagram
H₂O		
CO ₂		
CH₂O		
NH ₃		
O ₂		
BH₃		

HCN		
HF		
CBr₃I		
C₂H ₆		

Homework

1.		
2.		
3.		
4.		
4.		
4.		
4.		
4.		
4.		
4.		

Day 2 (Ionic Bonding-3.1)

Notes			

Practice Problems	
Complete the tables below:	
1. Show the formation of an ionic compound betwe	en Li and S.
PES Dia	agrams
Li	S
Lewis Dots and Valend	ce e ⁻ Transfer Diagram
Balanced Ion	ic Compound

2. Show the formation of an ionic compound betwe	en Al and P						
PES Dia	agrams						
Al	Р						
Lewis Dots and Valend	ce e ⁻ Transfer Diagram						
Balanced Ionic Compound							

Show the formation of an ionic compound between	en Na and N
·	
PES Dia	agrams
1 20 51	agrams
	T
Na	N
Lewis Dots and Valence	ce e ⁻ Transfer Diagram
Lewis Bots and Valent	oc o Transier Blagram
Palanced lon	ic Compound
Dalanced Ion	

4. Show the formation of an ionic compound between Mg and N.	4.	Show the	formation of	an	ionic con	npound between	en Mg and N.
--	----	----------	--------------	----	-----------	----------------	--------------

PES Diagrams

Mg	N
Lewis Dots and Valend	ce e ⁻ Transfer Diagram
Balanced Ion	ic Compound

5	Show the	formation	of an	ionic	compound	between	Na and	F
υ.	SHOW THE	IOIIIIaliOII	ui aii	IOHIC	Compound	Detween	ina alic	יג

PES Diagrams

Na	F			
Lewis Dots and Valend	ce e ⁻ Transfer Diagram			
Balanced Ionic Compound				

Homework

	1.
	2 .
I	3.
	4.
I	

Day 3

(Ionic Bonding-3.1)

Notes		
<u>Procedure</u>		
<u>Data</u>		
Conclusion		

Practice Problems

Complete the tables below:

Name	Cation (+) Dots Charge		Anior Dots	Formula	
Sodium Chloride					
Lithium Oxide					
Potassium Phosphide					
Calcium Bromide					
Barium Sulfide					
Magnesium Nitride					
Aluminum lodide					
Boron Selenide					
Gallium Arsenide					
Strontium Fluoride					
Francium Fluoride					

Homework

	1.
	2 .
I	3.
	4.
I	

Day 4

(Ionic Bonding-3.1)

I	Notes		

Practice Problems

Complete the tables below:

Name	Cation (+) Dots Charge		Anior Dots	Formula	
Sodium Chloride					
Lithium Oxide					
Potassium Phosphide					
Calcium Bromide					
Barium Sulfide					
Magnesium Nitride					
Aluminum lodide					
Boron Selenide					
Gallium Arsenide					
Strontium Fluoride					
Francium Fluoride					

1.		
2.		
3.		
4.		
4.		
4.		
4.		
4.		
4.		
4.		

(Ionic Bonding-3.1)

Notes

Precipitation	
<u>Data</u>	
Conclusion	
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	

Practice Problems

Binary Ionic Compounds	Common Polyator	nic lons
Zmary iome compounds	Nitrite	NO ₂ -
va manda a	Nitrate	NO ₃ -
xamples	Sulfite	SO ₃ ²⁻
	Sulfate	SO ₄ 2-
	Phosphite	PO ₃ 3-
	Phosphate	PO ₄ 3-
	Carbonate	CO ₃ 2-
	Hydroxide	OH-
	Hypochlorite	CIO-
Rules	Chlorite	CIO ₂ -
	Chlorate	CIO ₃ -
	Perchlorate	CIO ₄ -
/de" →	Permanganate	MnO ₄ -
	Acetate	C ₂ H ₃ O ₂
	Hydrogen carbonate	HCO ₃ -
Dalvetamia lania Campavada	Ammonium	NH ₄ *
Polyatomic Ionic Compounds	lodate	IO ₃ -
Examples		
Rules		

Complete the table below:

Name	Cation (+)	Anion (-)	Formula
Sodium Chloride			
Lithium Chlorate			
Copper (II) Carbonate			
Calcium Phosphate			
Calcium Phosphide			
Calcium Phosphite			
Iron (III) Nitrite			
Iron (II) Sulfate			
Gallium Sulfite			
Strontium Iodate			
Nickel (I) lodide			

1.		
2.		
3.		
4.		
4.		
4.		
4.		
4.		
4.		
4.		

(Covalent Bonding-3.1)

Notes

lonic vs. Covalent			
Covalent Tattoos			

Covalent Construction		
Molecule		
"Tattoo" Drawing		
3-Dimensional Model Drawing		

L

(Covalent Bonding-3.2)

Notes

Name	Name	
Name	Name	
Name	Name	

Practice Proble	ms	
# of Covalent Bo	nds =	
Octet Exceptions	<u>.</u>	
Formula	# Bonds	Lewis Structure
O_2		

 H_2

 H_2O

 CO_2

NH ₃	
CH ₄	
BCl ₃	
SiH ₂ S	
CBr ₄	
PH ₃	

OI_2	
HCN	
N ₂	
ClSiP	
*CH₄O	

1.		
2.		
3.		
4.		
4.		
4.		
4.		
4.		
4.		
4.		

(Covalent Bonding-3.2)

Practice Problems

Formula	# Bonds	Lewis Structure
SO ₄ ²⁻		
$\mathrm{H_{3}O^{+}}$		
NO ₂ -		
PO ₄ ³⁻		
OH-		

ClO ₃ -	
IO ₃ -	
$\mathrm{PF_4}^+$	
НСР	
N ₂	
SiS ₃ ² -	

1.		
2.		
3.		
4.		
4.		
4.		
4.		
4.		
4.		
4.		

(Molecular Geometry-3.3)

Notes

Molecular Geometry Hypothesis
The shape of a covalent compound is caused by

	Covalent Bond (single/double/triple)	Lone Pair
Practice Problems		
Molecular Geometry	Model	Examples
Linear		
Bent		
Trigonal Planar		
Trigonal Pyramidal		
Tetrahedral		

Formula	# Bonds	Lewis Structure	Magnet Model	Molecular Geometry
H_2				
CO_2				
HCN				
H ₂ O				
NO ₂ -				
SO_2				

CH ₂ O		
BH ₃		
CO ₃ ²⁻		
$\mathrm{H_{3}O^{+}}$		
NH ₃		
SO ₃ ³⁻		

CH ₄		
PO ₄ ³⁻		
NH ₄ ⁺		

1.		
2.		
•		
3.		
3.		
3.		
3.		
3.		
3.		
3.		
3.		
3.		
4.		

(Polariy -4.1)

1. Demo	
2. Warm Up	
Static Rod vs. Water	Static Rod vs. Hexane

3. Activity

Notes

Polar ()	
1.		
2.		
3.		
Nonpolar ()	
1.		
2.		
3.		

Intermolecular Forces (IMFs)	
<u>*Dipole - Dipole</u> ()
*London Dispersion ()

Practice

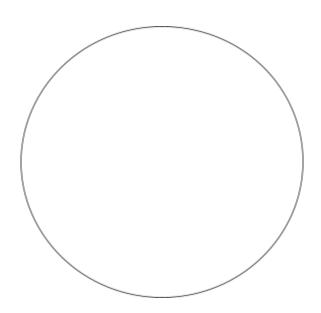
Moolecule	Polarity	IMF Diagram
H₂O		
CO ₂		
CH₂O		
NH ₃		
O ₂		
BH₃		

HCN		
HF		
CBr₃I		
C₂H ₆		

	1.
	2.
I	3.
	4.
I	

(Solubility & States-4.3)

1. Demo


1	
What is inside the bubbles of boiling water?	Draw a picture.
Explain your observations below using work	ds and a picture.
Explain your observations below using work Words	ds and a picture. <u>Pictures</u>

2. Warm Up						

3. Activity

Part I: Pepper

a) Picture

b) Explanation

Step 1: Water

Step 2: Pepper

Step 3: Detergent

Part II: Bubbles

a) Picture

b) Explanation

Step 1: Water

Step 2: Detergent

Step 3: Glycerine

a)	Ion - Dipole
b)	Solubility Examples (H ₂ O, NaCl and CO ₂)

Moolecule	Polarity	IMF Diagram
H₂O		
CO ₂		
CH₂O		
NH ₃		
O ₂		
BH ₃		
HCN		

HF	
CBr₃I	
C_2H_6	

2.			
•			
ა .			
3.			
J.			
3. 			
J.			
4.			

(Intermolecular Forces-4.2)

1. Warm Up		

2. Water/Hexane Tube

(a) Pre-Lab Notes

Species	Lewis Structure
H₂O (Water)	
C ₆ H ₁₄ (Hexane)	
I ₂ (lodine)	
Copper (II) Nitrate (Ionic)	

(b) Procedure

2.	Fill tube ⅓ with DI Water.
3.	Fill Tube ⅓ with Hexane.
4.	Cap securely and invert-return a few times, and observe.
5.	Using tweezers, place 1 crystal of lodine in tube.
6.	· ———
7.	
8.	• • • • • • • • • • • • • • • • • • • •
9.	Draw and label a picture of your observation below
(c) Us	sing what you have learned thus far in Topic 4, hypothesize an explanation for the species found
	top layer and those found in the bottom layer.
2 4	mawork

1. Wear Gloves and goggles.

1.	
2 .	
3.	
4.	

Complete the tables below:							
1. Show the formation of an ionic compound between	1. Show the formation of an ionic compound between Li and S.						
PES Dia	agrams						
Li	S						
Lewis Dots and Valend	ce e ⁻ Transfer Diagram						
Balanced Ionic Compound							

2	Show the	formation	of an	ionic com	nound	hetween	Al and	Р
∠.	OHOW HIC	IOIIIIauoii	oı aii		ibuuilu	DCLWCCII	AI aliu	

Al	Р
Lewis Dots and Valend	ce e ⁻ Transfer Diagram
Balanced Ion	ic Compound

3. Show the formation of an ionic compound between Na and N $\,$

Na	N				
Lewis Dots and Valence e ⁻ Transfer Diagram					
Balanced Ion	ic Compound				

4. Show the formation of an ionic compound between Mg and N.	4.	Show the	formation of	an	ionic con	npound between	en Mg and N.
--	----	----------	--------------	----	-----------	----------------	--------------

Mg	N
Lewis Dots and Valend	ce e ⁻ Transfer Diagram
Balanced Ion	ic Compound

5	Show the	formation	of an	ionic	compound	between	Na and	F
υ.	SHOW THE	IOIIIIaliOII	ui aii	IOHIC	Compound	Detween	ina alic	וג

Na	F
Lewis Dots and Valend	ce e ⁻ Transfer Diagram
Balanced Ion	ic Compound

1.		
2.		
3.		
4.		
4.		
4.		
4.		
4.		
4.		
4.		

(Ionic Bonding-3.1)

Notes		
<u>Procedure</u>		
<u>Data</u>		
Conclusion		

Practice Problems

Complete the tables below:

Name	Cation Dots	n (+) Charge	Anior Dots	n (-) Charge	Formula
Sodium Chloride					
Lithium Oxide					
Potassium Phosphide					
Calcium Bromide					
Barium Sulfide					
Magnesium Nitride					
Aluminum lodide					
Boron Selenide					
Gallium Arsenide					
Strontium Fluoride					
Francium Fluoride					

1.		
2.		
3.		
4.		
4.		
4.		
4.		
4.		
4.		
4.		

(Ionic Bonding-3.1)

Notes		

Practice Problems

Complete the tables below:

Name	Cation Dots	n (+) Charge	Anior Dots	n (-) Charge	Formula
Sodium Chloride					
Lithium Oxide					
Potassium Phosphide					
Calcium Bromide					
Barium Sulfide					
Magnesium Nitride					
Aluminum lodide					
Boron Selenide					
Gallium Arsenide					
Strontium Fluoride					
Francium Fluoride					

1.		
2.		
3.		
4.		
4.		
4.		
4.		
4.		
4.		
4.		

(Ionic Bonding-3.1)

Notes

Precipitation	
<u>Data</u>	
Conclusion	
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	

Practice Problems

Binary Ionic Compounds	Common Polyator	mic lons
a.	Nitrite	NO ₂ -
amples	Nitrate	NO ₃ -
amples	Sulfite	SO ₃ 2-
	Sulfate	SO ₄ 2-
	Phosphite	PO ₃ 3-
	Phosphate	PO ₄ 3-
	Carbonate	CO ₃ 2-
	Hydroxide	OH-
	Hypochlorite	CIO-
es	Chlorite	CIO ₂ -
	Chlorate	CIO ₃ -
	Perchlorate	CIO ₄ -
" →	Permanganate	MnO ₄ -
	Acetate	C ₂ H ₃ O ₂
	Hydrogen carbonate	HCO ₃ -
Delustamia lania Communata	Ammonium	NH ₄ *
Polyatomic Ionic Compounds	lodate	10 ₃ -
mples	1	
ules		

Complete the table below:

Name	Cation (+)	Anion (-)	Formula
Sodium Chloride			
Lithium Chlorate			
Copper (II) Carbonate			
Calcium Phosphate			
Calcium Phosphide			
Calcium Phosphite			
Iron (III) Nitrite			
Iron (II) Sulfate			
Gallium Sulfite			
Strontium Iodate			
Nickel (I) lodide			

1.		
2.		
3.		
4.		
4.		
4.		
4.		
4.		
4.		
4.		

(Covalent Bonding-3.1)

Notes

lonic vs. Covalent			
Covalent Tattoos			

Covalent Construction		
Molecule		
"Tattoo" Drawing		
3-Dimensional Model Drawing		

L

(Covalent Bonding-3.2)

Notes

Name	Name	
Name	Name	
Name	Name	

Practice Proble	ms	
# of Covalent Bo	nds =	
Octet Exceptions	<u>.</u>	
Formula	# Bonds	Lewis Structure
O_2		

 H_2

 H_2O

 CO_2

NH ₃	
CH ₄	
BCl ₃	
SiH ₂ S	
CBr ₄	
PH ₃	

OI_2	
HCN	
N ₂	
ClSiP	
*CH₄O	

1.		
2.		
3.		
4.		
4.		
4.		
4.		
4.		
4.		
4.		

(Covalent Bonding-3.2)

Practice Problems

Formula	# Bonds	Lewis Structure
SO ₄ ²⁻		
$\mathrm{H_{3}O^{+}}$		
NO ₂ -		
PO ₄ ³⁻		
OH-		

ClO ₃ -	
IO ₃ -	
$\mathrm{PF_4}^+$	
НСР	
N ₂	
SiS ₃ ² -	

1.		
2.		
3.		
4.		
4.		
4.		
4.		
4.		
4.		
4.		

(Molecular Geometry-3.3)

Notes

Molecular Geometry Hypothesis
The shape of a covalent compound is caused by

	Covalent Bond (single/double/triple)	Lone Pair
Practice Problems		
Molecular Geometry	Model	Examples
Linear		
Bent		
Trigonal Planar		
Trigonal Pyramidal		
Tetrahedral		

Formula	# Bonds	Lewis Structure	Magnet Model	Molecular Geometry
H_2				
CO_2				
HCN				
H ₂ O				
NO ₂ -				
SO_2				

CH ₂ O		
BH_3		
CO ₃ ²⁻		
$\mathrm{H_{3}O^{+}}$		
NH ₃		
SO ₃ ³ -		

CH ₄		
PO ₄ ³⁻		
NH ₄ ⁺		

1.		
2.		
2		
3.		
3.		
3.		
3.		
3.		
3.		
3.		
3.		
3.		
4.		

Topic 3: Bonding

Practic

Topic 3: Bonding

Practice Test

1. Ionic Bonding (3.1)	/ 10
(a) Diagram a Lewis Structure that shows formation of an Ionic Compound between Na a	ind P.
(b) Diagram a Lewis Structure that shows formation of an Ionic Compound between Al ar	nd Se
(c) Diagram a Lewis Structure that shows formation of an Ionic Compound between Ba a	nd At.
(d) Write a balanced formula for the ionic compound for Iron (II) Nitrate and Iron (III) Nitric	de
(e) Write the electron configuration for the copper atom and the Lithium Sulfide and Lithiu	ım Sulfate

2. Covalent Bonding (3.2) /10
(a) Draw the Lewis Structure for S_3 (no ring)
(b) Draw the Lewis Structure for CS ₃ ²⁻ (C in middle)
(c) Draw the Lewis Structure for BI ₃ (O in middle)
(d) Draw the Lewis Structure for PO ₂ - (O in middle)
(e) Draw the Lewis Structure for NI ₄ ⁺ (O in middle)

3.	Molecu	ılar	Geometry	(3.3)	١
----	--------	------	----------	-------	---

/10

(a) Identify the shape of the covalent molecules listed below:

 H_2O

CCI₂O OS₄²⁻ PH₃

CO

(b). Draw the ammonia molecule, NH₃ according to the correct molecular geometry (using appropirate dashes and wedges).