[public] FeatureParam Optimization

Author: Takashi Toyoshima
Last Modified: Aug 9, 2024

Context

FeatureParam<T>::Get() is often used to run Finch experiments, and more developers start
using it as recent projects need more optimization parameters. On the other hand, it takes
a visible time to call it, i.e. ~50ms in users’ trace for total calls per benchmark. Developers
who are careful about performance may design a static local cache so that the caller would
not call it multiple times, but people don't in most cases, or such optimizations are
unexpectedly removed by other developers while their refactoring changes.

So, if we can provide a common infrastructure to enforce having a cache, we can avoid
such unexpected performance regressions. It's a memory vs performance trade-off, but in
most cases, the parameter is stored as a class member, or so, and doesn't increase so
much once we establish a standard approach.

Preliminary Evaluation
PoC CL shows 2-5ms performance gain on each benchmark and +0.01 score on

speedometer3 on telemetry bot. The CL enforces the cache only for Blink side experiments
using non-enum types. So, there is more room to be improved in total.

Design

In the final design, | modify existing FeatureParam<T> struct to be able to have an optional
getter function, and prepare a macro that passes an external per-instance function that can
have a static variable to cache the parsed value inside.

| applied this change to most of Blink features except for enum cases and test affecting
cases, and results show 1-5ms speed up on each speedometer3 benchmark, and gets +0.02
point in the total score, but also APK size increased by 14.5 KiB for 135 FeatureParam
instances. So, roughly said 100 B cost per parameter.

Header changes


mailto:toyoshim@google.com
https://chromium-review.googlesource.com/c/chromium/src/+/5557049
https://pinpoint-dot-chromeperf.appspot.com/job/121ea360810000

#define BASE_DECLARE_FEATURE_PARAM(T, feature_object_name) \
extern constinit const base::FeatureParam<T> feature_object _name

#tdefine BASE_FEATURE_PARAM(T, feature object name, feature, name, \
default value)
namespace field trial params_internal {
T GetFeatureParamWithCacheFort##tfeature object name(
const base::FeatureParam<T>* feature param) {
static const T param = feature_param->GetWithoutCache();
return param;

}
}

constinit const base::FeatureParam<T> feature_object_name(
feature, name, default value,
&field trial params_internal::
GetFeatureParamWithCacheFor##feature_object name)

~ - - s s s s s

template <>
struct FeatureParam<T> {
constexpr FeatureParam(
const Feature* feature,
const char* name,
T default_value,
T (*cache_getter)(const FeatureParam<T>*) = nullptr)
: feature(feature),
name(name),
default_value(default_value),
cache_getter(cache_getter) {}

BASE_EXPORT T Get() const;
BASE_EXPORT T GetWithoutCache() const;

RAW_PTR_EXCLUSION const Feature* const feature;
const char* const name;

const T default value;

T (*const cache_getter)(const FeatureParam<T>*);

Implementation changes

int FeatureParam<T>::Get() const {
if (LIKELY(cache getter)) {




return cache getter(this);

}
return GetWithoutCache();

}

int FeatureParam<int>::GetWithoutCache() const {
return GetFieldTrialParamByFeatureAsInt(*feature, name, default_value);

}

Rollout Plan

Step 1: Land the baseline

Land the code change that allows the ‘cache_getter’ in the FeatureParam<T>. Then apply it
to the blink features in a follow-up CL as | tried in the POC.

Launch Blink-only enforcements via Finch to see the real world performance impact. The
cache in the FeatureParamWithCache<T> can be gated by another dedicated base::Feature
for the comparison.

Step 2: Apply to more cases

1. Land the ScopedFeaturelist fix that resets ‘cache_getter’ in required cases to
override the parameters in the test.

2. Support enum cases, preparing one more macros to pass one more argument for
enum definition.

Step 3: Evaluate performance impact

Run A/B test behind a finch that controls the local cache, and remove the finch once the
evaluation completes.

Discussion: should we enforce the cache use for all cases?

POC shows APK size is increased by 14.5 KiB. So, we need a discussion at
binary-size@chromium.org. We may apply the cache selectively, and a simple strategy is



mailto:binary-size@chromium.org

not apply for std::string cases that may use more memory, or they already have a local
std::string instance respectively.

Technical Notes

Static local variables approach

This approach results in a single pair of a comparison and a conditional branch for the
second and later runs. This looks ideal from the viewpoint of performance.

C++ code:

void foo() {
static Foo* foo = new Foo();

Compiled binary example:

rbp

rbp, rsp

rsp,

byte ptr [guard variable for foo()::foo],
.LBBO_5

rdi, offset guard variable for foo()::foo
__cxa_guard_acquire

eax,

Atomic pointer with a value approach

This approach is still fast enough and achieves performance improvements. But it was
difficult to remove static initializers even if we use constinit. My best attempt resulted in
remaining a large code that registers dtors of FeatureParamWithCache<>s to atexit() in the
static initializer list.

namespace field trial_params_internal {

template <typename T>




struct LOGICALLY CONST FeatureParamCache {
explicit constexpr FeatureParamCache<T>(const FeatureParam<T>*
feature_param)
: feature_param(feature_param) {}

const T& Get() const {
T* value ptr = atomic_value ptr.load(std::memory order_acquire);
if (value ptr == nullptr) {
std::unique_ptr<T> new_value =
std: :make unique<T>(feature_param->Get());
T* expected = nullptr;
if (std::atomic_compare_exchange strong(&atomic_value ptr, &expected,
new_value.get())) {
value = std::move(new_value);
value ptr = value.get();
} else {
value ptr = expected;
}
}

return *value_ptr;

}

void Reset() { value.reset(); }

RAW_PTR_EXCLUSION const FeatureParam<T>* feature_ param;
mutable std::atomic<T*> atomic_value ptr = nullptr;
mutable std::unique_ ptr<T> value;

template <typename T>
struct BASE_EXPORT LOGICALLY_CONST FeatureParamWithCache {
constexpr FeatureParamWithCache<T>(const Feature* feature,
const char* name,
T default value)
: feature_param(feature, name, default value),
feature_param_cache(&feature param) {}

const T& Get() const { return feature_param_cache.Get(); }

const struct FeatureParam<T> feature_param;
const field trial params_internal::FeatureParamCache<T>




feature_param_cache;

};

Simple approach

This approach is not thread-safe that is required for base::FeatureParam.

template <typename T>
struct BASE_EXPORT FeatureParamWithCache<T> {
constexpr FeatureParamWithCache<std::string>(const Feature* feature,
const char* name,
T default_value)
: feature_param(feature, name, default value) {}

const T& Get() {

if (!value.has value()) {
value = feature_param.Get();

}

return *value;

void Reset() { value.reset(); }

const struct FeatureParam<T> feature_param;
std::optional<T> value;

};

#define BASE_DECLARE_FEATURE_PARAM(T, feature_param) \
extern base::FeatureParamWithCache<T> feature_param

#tdefine BASE_FEATURE_PARAM(T, feature_param, feature, name, default value) \
base: :FeatureParamWithCache<T> feature_param(feature, name, default _value)

References

- Perf Try Bots (recommendation is PGO build with 128 runs)


https://chromium.googlesource.com/chromium/src/+/lkgr/docs/speed/perf_trybots.md

	[public] FeatureParam Optimization 
	Context 
	Preliminary Evaluation 
	Design 
	Rollout Plan 
	Step 1: Land the baseline 
	Step 2: Apply to more cases 
	Step 3: Evaluate performance impact 
	Discussion: should we enforce the cache use for all cases? 

	Technical Notes 
	Static local variables approach 
	Atomic pointer with a value approach 
	Simple approach 

	References 

