
Waves Unit II, Worksheet 6+

1. A string is fixed between the wave driver and pulley located 50.0 cm apart. A 200. g mass is attached to the end of the string providing the tension. When a wave generator vibrates at 150. Hz the string resonates in the third mode.

- a. Sketch the first 5 modes of vibration for this setup
- b. Find the wavelength for each of these modes
- c. Determine the speed of the wave for each of these modes
- d. Determine the resonant frequency for each of these modes

MODE	DIAGRAM	WAVELENGTH	FREQUENCY	WAVE SPEED
1 st	50.0 cm			
2 nd				
3 rd			150. Hz	
4 th				
5 th				

- 2. Eric Clapton plucks a C on a guitar string, which causes a fundamental frequency of 261 Hz. The wave travels down the string at 400. m/s.
- a. Draw a picture of the standing wave.
- b. Determine the wavelength of the wave.

3. Describe some factors that a guitar player can change to vary the frequency (pitch) of the sound produced by a guitar. Describe the change that each one would produce in the pitch of the sound. (Hint: you should be able to identify at least three changes that affect the pitch.)