HW 4: Debugging

Introduction

In this assignment you will need to finish the implementation of a Dictionary module that can
perform look-up operations, and a driver program that uses the module and generates statistics
about a given English text.

We will provide you with the majority of the code that already has most of the functionality, but is
full of nasty memory errors. And your job is to understand how memory is managed and used in
the provided code, identify those errors, and come up with a solution to those errors.

Starter Code & Submitting

You can download the code to klaatu or the VM by running the following command:

wget
https://courses.cs.washington.edu/courses/cse374/20au/homeworks/hw4.tar.gz
tar -xzf hw4d.tar.gz

You will see a folder called hw4_starter _code containing the following files:
SpellChecker.h, contains the declaration of functions in the Dictionary module.

e SpellChecker.c contains the implementation of functions in SpellChecker.h.
e Count typos.c the driver program.

e Utils.h contains the declaration of utility functions.

e Utils.c the implementation of utility functions.

The only files that you’ll need to modify and submit are
® SpellChecker.c
® count typos.c

Although there are only two files that contain the buggy code, you'll still want to look into the
header files to see what each function is supposed to do, and to decide how you may modify the
code while satisfying the spec.

Getting Started

This homework implements a program that checks spelling of English text and outputs relevant
statistics on the number of words, paragraphs, typos, etc.. This program is case insensitive, so it
will recognize “Hello” in the input text as “hello” in the dictionary.

The flow of the program, in general, goes like this:
e Build a dictionary from a certain file that contains all the words we want in the dictionary.
e Read and examine the input text word by word, updating variables holding statistics and
generating output about specific mistyped words along the way.
o \Write the human-readable statistics to the output.

Types

This homework involves usage of some types that we’d like to address before you look at the
actual code:

e size t

e char* and char**

e intvs. char

On size t:

The type size t is equivalentto unsigned long, and is conventionally used in C standard
library functions to store the size of a given type, as computed by calling sizeof on a variable
or type name. You can think of the name as "size type." On the klaatu system (64-bit) this will be
a 64-bit unsigned integer.

On char* and char**;:

As we’re all well aware, the type char* is a pointer to a null-terminated array of char’s. The
naive implementation of our dictionary is simply a char**: pointing to an array of char*’s, each
points to a string containing a single word. And our check_spelling operation is then a
grass-root binary search on the array to see if a word exists. As such, all operations on our
dictionary requires the user to provide both the dictionary itself and the size of the dictionary;
because we wouldn’t know how many char*’s the dictionary has or what the bounds of our
binary search will be otherwise.

On int, char (read if you're interested in understanding Utils.c):

Recall that int is a 32-bit/4-byte signed integer. char may be considered a specialized type for
character, but in reality it is the same as int except that it's shorter with only 8 bits. In fact,
they’re completely interchangeable if the value doesn’t go past the bounds of an 8-bit space.
Suppose that we have:

int i = 48;
char ¢ = '0'; // the ascii value of '@' is decimal 48

The following statements will both print out “48”:

printf("%d\n", i); // %d is the placeholder for integer values
to be interpreted as decimal numbers

printf("%d\n", c); //

https://www.geeksforgeeks.org/size_t-data-type-c-language/

And the following will both print out “0”:
printf("%c\n", i); // %c is the placeholder for ascii characters
printf("%c\n", c);

Also, this statement:

int i = '0";

is identical to:

int i = 48;

And so are these two:
char c = '0';

&

char c = 48;

Ultimately, you can even do this:
char ¢ = 48, d = 5;
c =c+d; // c is now decimal 53, which is the ascii value of '5'

With all of that said, it should be clear that int and char are identical in terms of binary
representation and it's up to the programmer how a specific instance of each is interpreted.

In Utils.c, we chose to use int to store the current character as we step down along the FILE*
stream; this is because we would like to be able to look at the current character and decide if it's
EOF; it just so happens that EOF is of type int.

(Alternatively, we can use feof() to detect EOF as well)

Directions

Compile-time errors

To start this homework, simply cd to the starter code folder and run this command:

$ make

And you’ll notice many compiler errors that come up.

To address this, you'll need to add certain #include statements to the appropriate places. To
find out what should be included in which file, you may refer to man pages, online
documentation and the error message from gcc for headers in C standard library. For others,
consider reading through the provided code, or at least the comments of them, to identify how
each of the code files are connected.

http://www.cplusplus.com/reference/cstdio/feof/
http://www.cplusplus.com/reference/cstdio/feof/

Runtime errors

Most of the work for this homework will happen here.

The provided code is designed to be infested with all kinds of memory errors that programmers
can easily make due to negligence. And your task will be to identify and get rid of them; the
major, obvious places where you have to make an addition are marked with // TODO but there
are many more hidden ones that you'll have to identify with gdb or valgrind.

To clarify, it is suggested that you remove the TODO comments once you’re done with
them.

To approach this part of the homework, we have a few tips that we recommend:

e valgrind is your absolute best friend for this assignment; however, the starter code as it
is, makes many and aggressive memory errors that it can cause valgrind to
freeze/crash. This means that sometimes you’ll have to ctrl-c to terminate it and make
use of whatever information that is printed on the screen.

e valgrind options, such as --leak-check=full, --show-1leak-kinds=all,
--track-origins=yes, are all very helpful but they do slow down the execution by a
certain amount. Consider using them progressively.

e If you have a hard time locating the bug with the information given by valgrind,
consider stepping through the program to the segment that causes the error using gdb,
and pay extra attention whenever you see a malloc operation or a write to heap
memory.

Style errors

It is recommended that you look at the style errors after you’re done with all the other ones;
because fixing style won’t involve any changes to the structure or the behaviors of the program.
We didn’t deliberately include any style errors for you to fix.

Please use python 2 to run clint.py

Goal

In the end, the program needs to satisfy the following requirements:
e The code needs to compile without any warning by running make.
e There should be no memory leaks.
e Your program’s behaviors need to match EXACTLY the behaviors of the
solution_binary given to you in the starter code.

Code Quality Requirements

https://courses.cs.washington.edu/courses/cse374/20su/exercises/code/clint.py

This assignment will not be graded on styles, because 95% of the code is written by the staff
and there are only a few lines of code that you need to change/add to make it work. However,
we do still recommend putting short comments where you do make changes, to

1. Help identify the part you changed

2. Reinforce good coding practice

	HW 4: Debugging
	Introduction
	Starter Code & Submitting
	Getting Started
	Types
	On size_t:
	On char* and char**:
	On int, char (read if you’re interested in understanding Utils.c):

	Directions
	Compile-time errors
	Runtime errors
	Style errors

	Goal
	Code Quality Requirements

