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The vision of {\em artificial intelligence} (AI) is often manifested  
through an autonomous software module (agent) in a complex and uncertain  
environment. The agent is capable of thinking ahead and acting for long  
periods of time in accordance with its goals/objectives. It is also  
capable of learning and refining its understanding of the world. The agent  
may accomplish this based on its own experience, or from the feedback  
provided by humans. Famous recent examples include self-driving cars  
\cite{thrun-aim06} and the IBM Jeopardy player Watson \cite{watson}. This 
chapter explores the immense value of AI techniques for collective 
intelligence, including ways to make interactions between large 
numbers of humans more efficient. 
 
 
By defining {\em collective intelligence} as ``groups of individuals 
acting collectively in an intelligent manner,'' one soon wishes to 
nail down the meaning of {\em individual}. In this chapter, 
individuals may be software agents and/or people and the collective 
may consist of a mixture of both. The rise of collective intelligence 
allows novel possibilities of seamlessly integrating machine and human 
intelligence at a large scale -- one of the holy grails of AI (known 
in the literature as {\em mixed-initiative 
systems} \cite{horvitz-aim07}). Our chapter focuses on one such 
integration -- the use of machine intelligence for the management of 
{\em crowdsourcing} platforms \cite{weld-hcomp11}.   
 
 
 
\comment{ 
 We also take a traditional perspective 
from {\em artificial intelligence} (AI) by treating the phrase {\em seems 



  intelligent} as meaning that the group tends to achieve an 
explicitly stated goal or maximize a clearly defined utility 
function. It's important to note that the individuals have their own 
utility functions that are often quite different from that of the 
collective.} 
 
Crowdsourcing is a special case of collective intelligence, where a 
third party (called the {\em requestor}) with some internal objective 
solicits a group of individuals (called {\em workers}) to perform a 
set of inter-related tasks in service of that objective. The 
requestor's objective may be expressed in the form of a utility 
function to be maximized. For example, a requestor might wish to 
obtain labels for a large set of images; in this case, her utility 
function might be the average quality of labels subject to a 
constraint that no more than \$ X dollars be spent paying workers.  We 
assume that the workers act independently, interacting only through 
the shared tasks. Each worker has an individual utility function, 
which is often different from the collective's utility 
function. Furthermore, we assume that their utility functions are 
independent of each other. 
The AI subfield of {\em multi-agent systems} 
considers even richer models, in which individual agents may reason 
about the objectives of other agents, negotiate, and bargain with each 
other~\cite{weiss-multiagent}. We won't discuss these techniques here, 
but the chapter on game theory explores some of these issues. 
 
 
There are two natural points of connection between AI \&\ 
crowdsourcing: 1) AI for crowdsourcing and 2) crowdsourcing for 
AI. While this chapter centers on the former we note that in recent 
years crowdsourcing has had a significant impact on AI research as 
well -- a great many projects use crowdsourcing to label training sets 
as input for data-hungry supervised learning 
algorithms~\cite{snow-emnlp08,callison-burch-emnlp2009,hsueh-hlt-work09}.  
 
 
Why does crowdsourcing need AI? Crowdsourcing is an effective medium for  
congregating a large set of workers (usually virtually) who assist with a  
common goal. This allows for creative new applications that  
use the wisdom of crowds or the round-the-clock availability of  
people (e.g., \cite{bigham-uist10}). At the same time, the shear volume of  
tasks, and highly varying skills and abilities of workers typically make  
it infeasible to manually manage the task allocation as well as quality  
control. Moreover, the design of crowdsourced interfaces and workflows to  
accomplish a new task remains cumbersome and expensive. For example,  
often a task may get routed to a worker not skilled enough or  
interested in it. Different tasks may require slightly different workflows  
to achieve high quality. Different task instances may be individually  
easier or more difficult, requiring less or more work (iterations) on them.  
These and other challenges necessitate the use of automated techniques for the 
design and management of crowdsourcing processes. 
 
A long-term vision of AI for crowdsourcing is to enable  



optimal design of workflows and management of task instances, thereby  
making crowdsourcing platforms highly efficient, saving thousands of  
man-hours and millions of dollars, and also making crowdsourcing really  
easy to use for a novice requestor. AI is a natural fit for this vision  
because, in general, AI algorithms are great at building  
models, drawing inferences, and detecting outliers from the data. They are  
also effective in taking decisions in uncertain environments towards  
maximizing an objective. In this chapter, we discuss several uses  
of AI in this space -- we describe learning algorithms  
that model the accuracy of crowd members, aggregation methods for  
predicting true answers from error-prone and disagreeing workers, and  
AI control algorithms that choose which tasks to request and which  
individuals should work on them. 
 
 
\begin{figure} 
{\small 
\bi 
\item {\em requestor} - an entity who is assembling a crowd for an objective. 
\vspace*{-0.03in} 
\item {\em objective} - what the requestor is trying to accomplish 
\vspace*{-0.03in} 
\item {\em worker} - an entity answering questions or performing tasks. 
\vspace*{-0.03in} 
\item {\em task} - what a worker is asked to do. Often responding to a 
  multiple choice {\em question}. 
\vspace*{-0.03in} 
\item {\em response} - what a worker returns when given a question; 
  also called a label. 
\vspace*{-0.03in} 
\item {\em answer} - the true, objective answer to a question, when 
  one exists; ideally a worker's 
  response will be the answer, but sometimes workers make mistakes. 
\vspace*{-0.03in} 
\item {\em workflow} - a set of tasks, usually interrelated, which are given 
  to workers to perform.  Some tasks may be performed automatically by 
  programs, but most are given to human workers. 
\ei 
} 
\vspace*{-0.08in} 
\caption{Terminology used in this chapter.} 
\label{f:term} 
 
\end{figure} 
 
\section{Preliminaries} 
 
Because different individuals in a crowdsourced collective may have differing 
priorities, it's important to be clear on terminology; please refer to 
Figure~\ref{f:term}. We'll consider a variety of objectives in the 
chapter, but the most common objective is to accurately label a set of 
examples; here the requestor needs to choose how many  
workers should be given a labeling task and how their responses should 



be aggregated to estimate the best answer (i.e., the most likely 
answer).  Usually, the requestor's objective includes minimizing the 
number of tasks given to workers, either because the workers are paid 
per task or just to avoid burdening volunteer workers. Sometimes, 
however, a requestor is interested in minimizing {\em latency} --- 
\ie, being able to compute an answer quickly --- and this may require 
additional tasks, as we explain in the chapter's final section. 
 
Either way, we focus on algorithms for helping the 
requestor decide what to do.  As you'll see these methods include 
different types of machine learning, expectation maximization, 
optimization, policy construction for partially-observable Markov 
decision processes (POMDPs), and reinforcement learning. 
 
The choice of algorithm depends not just on the requestor's objective but 
also on the {\em labor market}, an economic term we'll use even if the 
workers are volunteers and not being paid. In some markets, like Amazon 
Mechanical Turk, a requestor can post tasks to the market and workers get 
to choose which task they wish to attempt.  In other markets, one can 
directly assign specific tasks to individual workers. In all cases it turns 
out to be useful to track workers' responses in order to construct a model 
of their accuracy and maybe which kinds of tasks they enjoy.  In theory, a 
human worker is capable of performing an arbitrarily complex task, but we 
focus on simple jobs known as {\em microtasks}. 
For example, we consider 
small tasks like multiple-choice questions, writing or editing a short text 
description, or drawing a bounding box on an image.  Often a complex 
objective can be achieved by a {\em workflow} comprised of these simple 
tasks.  Finally, as mentioned in the introduction, we assume that 
individual workers are largely independent of each other; as a result, our 
approaches may not work well if malevolent workers collude in order to 
deceive the requestor. Fortunately, such behavior is extremely rare in 
practice. 
 
The rest of this chapter has a simple organization. The next section 
discusses how to best interpret the output of error-prone workers. %--- 
The final section discusses 
the control problem ``What's the best job to do next and who should 
work on it?'' considering objectives such as minimizing the amount of 
labor required or minimizing the time necessary to perform the task. 
 
\section{Collective Assessment \&\ Prediction} 
                 %\section{Quality Assessment} 
                 %\section{Learning About Workers} 
\label{s:consensus} 
 
 
 
To account for variability in worker skill, crowdsourcing requesters often 
ask multiple workers to perform the same (or related) tasks and then 
aggregate responses to infer the correct answers. In practice, the 
effectiveness of crowdsourcing can be highly dependent on the method for 
aggregating responses, and numerous strategies have been investigated. In 



this section, we describe a set of ``post hoc'' response aggregation 
methods that attempt to glean as much information as possible after task 
responses have been received. In the next section we turn to more advanced 
methods that seek to assign a given worker the most important task to 
perform or the most informative question to answer. 
 
 
Suppose that an AI system is given a set of multiple-choice questions, 
a set of workers, and a set of their responses such that some 
questions are answered by more than one worker.  We assume that the 
questions are objective, i.e. each has a unique correct answer, but 
workers may not answer correctly. Finally, we assume that the majority 
of workers are more likely to be correct than to make a mistake.\footnote{If 
the majority of workers are likely to agree on an incorrect answer, 
then more sophisticated methods, like Bayesian Truth Serum, are 
necessary to reveal the right answer~\cite{prelec-objective-bts}.}  
Artificial intelligence systems can work without information beyond the 
workers' proposed answers. The system's objective is to infer the 
correct answers from the noisy worker responses. 
 
While we can mitigate the negative effects of imperfect workers in many 
ways, the techniques we consider in this section revolve around two common 
patterns. The first idea is to exploit redundancy, comparing different 
workers' responses to the same question. Indeed, Snow \etal\ \cite{snow08} 
found that simple majority voting allowed a crowd of novices to outperform 
an expert on natural language labeling tasks, like sentiment analysis and 
judging word similarity. The second common pattern is to learn and track 
the skills of the workers. Rather than a simple majority vote, these 
approaches weigh worker responses by using models of workers' abilities. In 
the simplest case, such a model might be a single ``accuracy'' number, but 
models can grow arbitrarily complex. For example, if one knew a worker was 
excellent at translating French to English, one might suspect that her 
English to French translations would also be of high quality. 
 
\subsection{Simple Approachs to Collective Assessment} 
 
 
We first consider algorithms that improve on vanilla majority voting by 
modeling worker skill.  These are the bread and butter algorithms. The 
simplest approach, and one commonly used in practice, uses supervised 
learning, which gives workers questions for which ``gold standard'' answers 
are already known~\cite{dai-aaai11}. Workers who fail to correctly answer 
gold-standard questions are dismissed or have their weights lowered.  To 
avoid gaming behavior (e.g., where a human might answer the first few 
questions and then, after convincing the system of his or her aptitude, 
unleash a simple bot to answer remaining questions, likely with greatly 
reduced accuracy), it is common to intermix questions with known and 
unknown answers. However, even this strategy is foiled by scammers building 
bots which utilize databases of known questions, leading to elaborate 
strategies for programmatically generating an unbounded number of 
gold-answer questions~\cite{oleson-hcomp2011}. 
 
\begin{figure} 



 \begin{center} 
{\resizebox*{3in}{!}{\rotatebox{0}{\includegraphics{figs/em.pdf}}} } 
 \end{center} 
\vspace*{-0.15in} 
\caption{Expectation maximization repeats two steps until convergence, 
  alternately estimating the best answers, then updating its model of 
  workers.} 
\label{f:em} 
\end{figure} 
 
 
 
\subsection{Collective Assessment using Expectation Maximization} 
 
More sophisticated approaches eschew gold-answer questions entirely, 
instead using unsupervised learning to jointly estimate worker accuracy and 
consensus answers together.  As a first example, we consider early work by 
Dawid and Skene~\SHORTCITE{dawid-as79}. Although they originally pose their 
approach in terms of medical diagnosis, it clearly fits the crowdsourcing 
model presented above. There is a single question with an unknown correct 
answer and also parameters, $P_w(r | a)$, for each worker and each possible 
response, describing the probability that worker $w$ will give response $r$ when 
the true answer is $a$. These probabilities can be seen as a very simple 
model of worker abilities --- an expert worker would have $P_w(r | a)$ 
close to zero for all $r \neq a$.  Dawid and Skene make an important 
simplification --- they assume that the worker's responses are 
conditionally independent of each other given the true answer.  In other 
words, if we already knew the true answer, then our estimate of $P_w(r | 
a)$ should not be affected regardless of how other workers answer the 
question.  David and Skene use an iterative algorithm called 
\emph{expectation-maximization} (EM) to estimate which answers are correct 
at the same time that the algorithm learns the model of worker 
accuracies.  
 
EM embodies the intuition that a good worker is one whose answers 
agree with those of other workers. More precisely, a great worker's 
answers agree with those of other good workers. Unfortunately, this 
idea yields a chicken-and-egg dilemma: how can you score one worker 
without already knowing the quality of her peers?  EM solves this 
problem by computing better and better estimates until reaching a 
fixed point. It starts by taking a majority vote and using that to 
determine an initial guess of the correct answer for each question. EM 
then scores each worker ($P_w$) based on how many answers she got 
right. In subsequent iterations, EM weights each worker's votes based 
on her score, so better workers (with higher $P_w$ scores) count 
more. Since weighted votes likely produce a different set of correct 
answers, the next step is to recompute each worker's score. This 
process repeats until quiescence.  As EM assigns higher weights  to 
good workers and lower weights to poor workers, it allows a single  
strong worker to overrule multiple weak workers and the predicted 
answer may no longer be the majority vote. 
 
 



 
 
 
More precisely, EM is a general method for learning 
maximum-likelihood estimates of hidden parameters. As shown in 
Figure~\ref{f:em}, it initializes the probability parameters to random 
values and then using the worker responses, repeats the following steps to 
convergence:\comment{J: suggestions for figure: 1) Make single input arrow on 
top, 2) order of operations is unclear, 3) label boxes ``E'' and ``M''.  D: 
Feel free to make a stab at improving the figure. } 
 
\begin{itemize}  
\item {\bf Expectation:} Given estimates of all the probabilities, 
$P_w(r | a)$, compute the probability of each possible answer using Bayes' 
rule and the assumption of conditional independence. 
 
\item {\bf Maximization:} Given the posterior probability of each possible 
  answer, compute new parameters $P_w(r | a)$ that maximize the likelihood 
  of each worker's response. 
\end{itemize} 
 
  
The model of Dawid and Skene is a relatively simple one, and 
researchers have created new models to address its various 
weaknesses. Whitehill \etal~\SHORTCITE{whitehill09} note that worker 
responses are not really independent unless conditioned on both the 
correct answer {\em and} the question difficulty.  To see this, 
suppose that on average students have an 80\% chance of correctly 
answering textbook questions. Then we would expect that Jane, in 
particular, would have an 80\% chance when confronted with question 
13.  However, if we were told that all 25 of the other students in the 
class had gotten the problem wrong, then we'd probably suspect that 13 
is especially hard and we'd want to revise our estimate of Jane's 
chances downwards. Unfortunately, Dawid and Skene's model cannot make 
this inference, but Whitehill \etal's uses information about 
workers' errors to update its belief about problem difficulty and hence 
about other workers' accuracies.  The algorithm still follows the EM 
pattern shown in Figure~\ref{f:em}, but the probability computations 
are a bit more complex. 
  
Welinder \etal~\SHORTCITE{welinder10} take Whitehill's approach a step 
further, designing a model with general multidimensional 
parameters. Questions have many features, one of which could be 
difficulty, and workers are modeled as linear classifiers who make 
their responses by weighting those features. This allows Welinder 
\etal's model to account not only for worker skill and question 
difficulty, but also arbitrary worker and question features. For 
instance, they can learn that one worker is particularly good at 
discerning different types of birds, but only when viewed from the 
back. Surprisingly, these question features need not be specified in 
the model a priori; their algorithm learns the features! While this 
leads to excellent performance at answer assessment, it does have a 
drawback --- it may be difficult or impossible for a human to 



understand the learned model. 
 
 
 
All the models we have covered thus far assume that one knows the set 
of possible answers before giving tasks to workers. Lin 
\etal~\SHORTCITE{lin-uai12} address the case when either requesters 
cannot enumerate all possible answers for the worker or when the 
solution space is infinitely large. They use a model called the 
Chinese Restaurant Process~\cite{aldous83} that often matches 
distributions seen in nature.  Specifically, they specify a generative 
probabilistic model where workers answer a question by returning a 
previously-seen response with probability proportional to the number 
of other workers who have given that response and returning a novel 
response with some small fixed probablity.  The benefits of this model 
include 1) the ability to handle open-ended questions, and 2) the 
capacity to deal with common mistakes that are repeated by multiple 
workers. 
 
 
\comment{\subsection{Other Approaches to Collective Assessment}} 
 
The AI literature abounds with various approaches to ``post hoc'' response 
aggregation.  
Kajino \etal ~\SHORTCITE{kajino-aaai12} note that using EM to learn 
parameters can lead to local optima. They propose instead to model the 
repeated labeling problem as convex optimization, so that a globally 
optimal solution can always be obtained.  
\comment{To that end, they introduce a 
few assumptions.  First, they only address binary questions, \ie, 
those having only two possible answers, ``yes'' and ``no.'' Second, 
they assume that each question can be written as a vector of features 
$x$; furthermore, they assume that these features are known in advance 
(unlike Welinder \etal's~\SHORTCITE{welinder10} approach, which learns 
the features).  Next, they assume that every worker can be modeled 
with a weight vector $w_j$ whose elements are drawn from Gaussian 
distributions with means specified by the vector $w$, which denotes an 
average worker. Finally, they assume that the correct answer is 
generated by $\sigma(w^Tx)$ and $1-\sigma(w^Tx)$, where $\sigma$ is 
the logistic sigmoid function\footnote{The definition is simple: 
  $\sigma(n) = \frac{1}{1+e^{-n}}$.}, $x$ is the vector of features 
that describes the task, and $^T$ denotes matrix 
transposition. Similarly, the probabilities of a worker $j$'s 
responses are given by $\sigma(w_j^Tx)$ and $1-\sigma(w_j^Tx)$, By 
assigning a Gaussian distribution for the values of $w_j$, Kajino 
\etal\ ensure the existence of a convex objective function, and 
optimization is guaranteed to produce the global optimum.} 
Prelec \etal ~\cite{prelec-objective-bts} develop an algorithm that  
can find correct answers missed by the 
majority by asking workers to predict coworker 
mistakes. Liu \etal\ \cite{liu-nips12} apply belief 
propagation and mean field approximation, techniques beyond the scope 
of this book, to perform the inference required to learn correct 



answers.\comment{While we do not claim to have covered all possible 
  techniques for offline batch learning, we have presented a wide 
  sample that we hope is representative of this subarea of learning in 
  crowdsourcing. Some transition sentence here?}  
 
While we cannot hope to describe the entirety of the literature, we note that 
researchers are now beginning to apply the full force of state-of-the-art machine 
learning algorithms to this problem.  To make comparison easier, Sheshadri and Lease 
\cite{sheshadri-hcomp13} have developed an open-source shared task framework that 
allows benchmarking of response aggregation methods. 
 
 
\subsection{Gradually Moving to Fully-Automated Approaches} 
 
The next set of approaches seek to do more than simply reconcile multiple 
answers to a set of questions --- they use machine learning to create an 
autonomous system that can answer questions itself.  Raykar 
\etal~\cite{raykar10} propose a model that can not only learn about worker 
abilities and infer correct answers, but also jointly learn a logistic regression 
classifier  
that predicts future crowd responses or the answer --- obviating the need 
to consult human workers in the future.  \comment{Like the model of Kajino \etal 
~\SHORTCITE{kajino-aaai12}, they restrict attention to binary questions and 
assume that each question can be written as a vector of features $x$.  They 
build a single logistic regression model for the task in 
question. In other words, they model the correct answer to the question to 
be probabilistically generated by $\sigma(w^Tx)$ and $1-\sigma(w^Tx)$, 
where $w$ is a vector of weights to be learned and $\sigma$ is the logistic 
sigmoid function.  Worker responses are then generated using the EM model 
of Dawid and Skene~\SHORTCITE{dawid-as79}. By learning the logistic regression model 
jointly, they are able to infer correct answers to future questions without 
consulting the crowd.} They also use an EM pattern to learn their model. 
 
Wauthier \etal~\cite{wauthier-nips11} relax the idea that repeated 
labeling tasks must contain a ``correct answer.'' Instead, they build 
a model that describes each worker's idiosyncrasies, which they use to 
predict {\em each worker's response to a future question}, $q$, as a 
function of features of $q$.  Since this model handles subjective 
questions, it's quite powerful. Furthermore, it can be used to answer 
objective questions by adding an imaginary, virtual worker to define 
the gold standard, desired answers for a subset of the questions.  Now 
one can simply use Wauthier \etal's method to predict how 
this imaginary ``always correct'' worker would answer future 
questions.  However, Wauthier \etal's method has drawbacks as well. In 
contrast to the preceding techniques, which happened to  
all be \emph{unsupervised}, it relies on {\em supervised 
  machine learning}, which means that it requires that one already 
know the answers to some of the questions in order to predict the 
answers to others.  
 
The ultimate objective of Raykar \etal\ and Wauthier \etal\ is to replace 
human workers rather than derive consensus from their answers.  
Their methods assume that there exist features for the 



question that would allow a learned classifier to accurately predict 
the answer. However, crowdsourcing is often used precisely to answer 
questions which are beyond AI's state of the art. 
 
Instead of bootstrapping the learning process by using multiple workers to 
redundantly answer each question, Dekel 
and Shamir~\cite{dekel-colt09,dekel-icml09} devise algorithms to limit the 
influence of bad workers. Specifically, they use workers' responses to 
train a support vector machine classifier, and they add constraints to the 
loss function such that no one worker, and no bad worker, can overly 
influence the learned weights. They also introduce a second technique to 
completely prune away any bad workers, re-solving the questions with the 
remaining, high quality workers. 
 
\section{Workflow Optimization} 
 
In the previous section we discussed the AI techniques used for 
predicting worker accuracy and determining the correct answers from a 
set of error-prone responses.  We now shift our focus to the task of  
{\em optimizing} a given crowdsourcing process. Specifically, we consider 
the problem of dynamically controlling the execution of an 
interrelated set of tasks, which we call a {\em workflow}. A requestor 
typically has several objectives that must be jointly optimized. These 
often include the quality of the output, the total cost of the process 
(in case of economically motivated crowdsourcing) and/or other 
measures of efficiency such as number of workers required, total 
completion time, \etc\ Inevitably, there are tradeoffs between 
objectives. 
For example, one can usually increase output quality by enlisting more 
workers, but this increases cost.  
On the other hand, one can reduce cost by paying 
workers less, but this increases latency~\cite{mason-kdd09}.  In this 
section we describe various approaches useful for crowdsourcing 
optimization. While we focus on economically-motivated, 
micro-crowdsourcing platforms such as Amazon Mechanical Turk, the 
techniques also apply to other platforms, such as 
Zooniverse~\cite{lintott08}, where one wishes to get the best 
quality output from a limited number of volunteers. 
 
Researchers have taken two broad approaches for such 
optimizations. The first is to carefully design an efficient workflow 
for a given task such that the overall output is high-quality, and at 
the same time does not spend much money. An example is in sorting of 
items, such as images. One could use comparison between items or ask 
workers to rate an item on a numerical scale \cite{marcus-vldb11}. The 
latter approach spends less money but may not be as accurate. A hybrid 
scheme that first rates each item independently and later uses 
a comparison operator on an intelligently chosen subset of items to do 
fine-grained sorting produces a better tradeoff between cost and 
quality.  There are several other examples of alternative workflows 
for a task, which achieve different cost-quality tradeoffs.  
These include computing the max from a set of items 
\cite{venetis-www12}, multiple-choice tasks \cite{sun12}, soliciting 



translations \cite{sun-hcomp11}, writing image descriptions 
\cite{little10}, and taxonomy generation 
\cite{chilton-chi13}. Designing an efficient workflow is usually task 
dependent. It requires involvement of a domain expert and typically 
much trial and error.  To our knowledge, there are few general 
principles for this kind of work. The onus is on a human to creatively 
come up with a good workflow for the task. 
 
A second approach to crowdsourcing process-optimization is more 
computational. It assumes a given workflow (\eg, developed using the 
first approach) that has some parameters or decision points. It then 
uses AI to optimize the workflow by learning the best 
values of the parameters and controlling the workflow to route a task 
through various decision points. Since these methods can get somewhat 
complex, we start with the simplest possible example. 
 
 
\begin{figure} 
 \begin{center} 
{\resizebox*{3in}{!}{\rotatebox{0}{\includegraphics{figs/vote.pdf}}} } 
 \end{center} 
\caption{The POMDP model for a binary vote workflow repeatedly decides 
  if it is cost effective to ask another worker or whether the 
  incremental reduction of uncertainty doesn't justify the cost.} 
\label{f:vote} 
\end{figure} 
 
\subsection{Control of a Binary Vote Workflow} 
 
One of the simplest forms of control problem arises in crowdsourcing of a  
single binary choice question, where workers provide either a `yes'  
or a `no' response. Because worker responses are noisy, a common solution for quality  
control is to ask multiple workers and aggregate the responses using 
majority vote or the EM approaches described previously. But how many 
workers should be asked for each question?  Choosing the optimal number 
requires making a trade-off between cost and the desired quality. We now focus on this 
control problem. 
 
Typically, a requestor either decides this number based on the available 
budget or does some initial performance analysis to understand the average 
ability of the workers and then picks a number to achieve a desired accuracy. These 
approaches miss an extremely important insight: not all questions (nor 
workers) are equal. A fixed policy sacrifices the ability to shift effort 
away from easy problems to improve 
accuracy on hard tasks.  A superior solution is to perform {\em dynamic} 
control, \ie, decide for each question whether to take another judgment, 
based on the exact history of work so far; see Figure \ref{f:vote}. 
 
\comment{ A rather simple example is the very popular majority vote 
  workflow for consensus tasks, described in 
  section~\ref{s:consensus}: ask a binary-valued question of $N$ 
  workers and return the majority opinion (or one weighted by the 
  worker's expected accuracy). But what should be the value of the 



  parameter $N$?  Asking more workers will likely give higher quality 
  at higher costs. An optimal value of $N$ will trade-off desired 
  quality and budget constraints.  Furthermore, the optimal value will 
  depend on the abilities of workers for this task and the difficulty 
  of the question. Humans are generally not very good at this kind of 
  parameter optimization. On the other hand, that is the strength of 
  machines. We can make use of various automated solutions such as 
  decision-theoretic optimization and related algorithms for computing 
  the best parameter values and optimize a workflow so that it runs at 
  its maximum efficiency.} 
 
 
As a case study we discuss the work of \cite{dai-aaai10,dai-aij13}, which 
models the problem of deciding whether to ask for another vote as a 
partially observable Markov decision process (POMDP), which is a popular 
technique for decision-theoretic optimization. Describing the POMDP 
representation and solution algorithms in detail is out of the scope of this chapter 
(see~\cite{kaelbling-aij98,poupart-chapter11}), but at a high level, a 
POMDP is a sequential decision making problem where all the actions (in our 
case, whether to ask for another worker's judgment or simply submit the 
answer) are known, the set of {\em possible} states is known but the exact 
state is not observable. For example, the true answer is not 
observable. The POMDP model defines system dynamics in terms of probability 
distributions for state transitions and observations. It also defines a 
reward that the agent tries to maximize. 
 
The first step in defining the POMDP is specifying the state 
space as a pair $(a,d)$, where $a$ denotes the correct answer for the 
question (``yes'' or `no'') and $d$ is the question's difficulty (a number 
between zero and one). Since neither $a$ nor $d$ change over time, the 
POMDP transition probability is simply the identity function, making it a 
relatively simple problem to solve.  However, the values of neither $a$ nor 
$d$ can be observed directly; at best, one can maintain a probability 
distribution (called a ``belief'') over the possible values of $(a, d)$. We 
must now specify the POMDP observation model, which encodes the probability 
of various observations as a function of the (hidden) state. For example, 
what is the probability of a worker answering ``yes'' when the true answer 
is ``no,'' \etc This is just another name for the worker models discussed 
previously, and we can use the methods of Whitehill 
\etal~\cite{whitehill09}. 
 
A final input to the POMDP is a reward model, which in our case means the 
utility (or money equivalent) of obtaining the correct answer.  For 
example, the requestor may specify that a correct answer is worth $\$1.00$ 
while an incorrect result (e.g. answering `no' when the true hidden answer 
is `yes') is equivalent to a $-\$1.00$ penalty.  This utility is important, 
since it allows the controller to trade off between cost and quality. If a 
correct answer is very important to the requestor, the controller should 
enlist more workers. In essence, the POMDP controller can 
compare the cost of asking additional worker(s) and the expected utility 
gain due to increased likelihood of a correct answer, and only ask 
another worker when the net marginal utility is positive. 
 



The literature describes numerous algorithms for solving 
POMDPs~\cite{kaelbling-aij98,poupart-chapter11}, and many can be adapted for 
this problem. Dai \etal\ try lookahead search, discretized dynamic 
programming and UCT. The exact choice of algorithm is not important. Most 
algorithms will perform better than a static fixed number of instances per 
question or even a hand-coded policy like ``ask two workers; if they agree, 
return that answer, otherwise break the tie with a third vote.''  Dynamic 
control is superior because it automatically adapts to question difficulty 
and worker accuracy, capturing some very valuable insights.  First, if a 
question is easy (workers agree on its answer), the controller will not ask 
for many more judgments. On the other hand, if workers disagree the 
question may benefit from more judgments. Second, if a worker who is known 
to be excellent answers a question, the controller 
may not ask for more judgments. Finally, if a question is deemed very 
difficult (\eg, good workers disagree on its answer), the system might 
decide that it is not worth finding the correct answer for this question as it 
might be too expensive. In such cases, the controller will quit early 
even if it is not very sure about the answer. These kinds of intelligent 
decisions make it quite valuable for requestors to use AI techniques for 
workflow optimization. 
 
Other researchers have also studied this problem in slightly different 
settings. Parameswaran \etal\ \cite{parameswaran10} investigate other 
budgeted optimization problems and their theoretical properties. 
Waterhouse \cite{waterhouse-cscw13} investigates information-theoretic 
measures and uses information content of a judgment as its value.  Lin 
\etal\ \cite{lin-uai12} study controllers for data filling questions, where 
a worker must choose from an unbounded number of possible answers to a question 
instead of picking among two or a small number of known choices. 
 
Kamar \etal\ \cite{kamar-aamas12} study the interesting problem of 
mixed initiative systems where there is a machine model, which provides its 
own judgment for each question (and possibly an associated 
confidence). Asking the workers can validate or challenge the machine 
answer.  However, not all questions may need a worker response. If the 
machine is very confident then the controller may choose to ask no or very 
few human workers. Kamar \etal\ develop modifications of the UCT algorithm 
for creating their controller that can enhance machine answers with worker 
judgments for additional accuracy. 
 
Along the same lines, Lin \etal\ \cite{lin-aaai12} use multiple kinds of 
evidence in the form of different workflows (or different ways of asking 
the same question).  This exploits the observation that some questions may 
be best asked in one form and others in another. Lin \etal's system can 
automatically switch between such workflows to 
dramatically improve the output quality without increasing the cost. 
 
Another important aspect of control algorithms is model learning.  So far 
we have assumed that the controller knows 1) the prior probability 
distribution for question difficulty, 2) ability parameters of workers, and 
3) observation probabilities. In some cases, a human designer can estimate 
these numbers, but fortunately it is possible for the controller to {\em 
learn} these values even as it is controlling the workflow. A powerful 



formalism for balancing model learning with reward optimization is {\em 
reinforcement learning} (RL) \cite{suttonbarto98}. In RL-based control, 
the controller is in charge from the start; it naturally shifts its focus 
from model learning (exploration) in the beginning to reward maximization 
(exploitation) later on. Lin \etal\ \cite{lin-aaai12} have used RL and 
found to have equivalent quality results without an explicit learning 
phase.  Kamar \etal~\cite{kamar-ijcai13} describe a similar approach 
applied to citizen science applications. We expect RL methods to become 
increasingly popular, since they dramatically reduce the entry barrier 
for the use of AI technology in crowdsourcing. 
 
 
\subsection{Selecting the Best Question to Ask} 
 
So far we have focused on the control of a {\em single} question where the 
agent's goal is to obtain a correct answer for a given question in a 
cost-efficient manner. However, requestors typically turn to crowdsourcing 
only when they have a large number of questions. An interesting decision 
problem arises in question selection in the context of unreliable workers. 
Given a fixed budget, should one divide resources equally, asking the same 
number of workers to tackle each question? Alternatively, it may be better 
to dynamically allocate workers to questions based on their answer 
uncertainty. The best policy is a function of how the answers will be used. 
 
One common scenario is to use crowdsourced responses as a set of 
labeled examples for training a machine learning classifier. One can 
formalize the decision problem as follows.  Suppose we have a large 
number of unlabeled questions, $u_1, \ldots, u_n$. Moreover, suppose 
that we have already asked workers for judgments to some of the 
questions $q_1,\ldots,q_k$. For each question $q_i$ we may have asked 
multiple workers and hence we may have an aggregate answer (and 
associated confidence) for use in training the classifier. The 
decision problem is ``Which question do we pick next for (re)-labeling?" 
 
There are two competing sources of evidence for this decision: 1) an 
existing aggregate answer (labeled example) for a question may be 
inaccurate and may in fact hurt the classifier, suggesting we may want 
to ask for another judgment (relabeling), or 2) the classifier may be 
uncertain in some part of the hypothesis space and we may want to pick 
a question based on the classifier's uncertainty on the unlabeled 
data (active learning). 
 
{\em Active learning}, the problem of choosing which unlabeled example 
should next be given to the oracle, has been widely studied in the AI 
and ML literature~\cite{settles12}. However, before the advent of 
crowdsourcing little work had considered active learning with noisy 
labels and hence the possibility of relabeling. Recently, several 
strategies have been explored for this problem.  Sheng 
\etal\ \cite{sheng08,ipeirotis13} focus on how best to relabel 
already-labeled questions, comparing multiple question selection 
strategies such as repeated round robin, answer entropy-based 
selection and others. 



Donmez \etal\ \cite{donmez08} focus on various two-worker scenarios. For instance, 
they develop an algorithm to determine the best examples to label and by whom if one 
worker is perfect but costly and the other worker is fallible but cheap.  
Wauthier and Jordan \cite{wauthier-nips11} propose a general utility-theoretic 
formulation to evaluate expected utility gain for each question and pick 
one with maximum gain. 
  
Lin \etal~\cite{lin-hcomp14} approach understanding the tradeoff from a different 
direction, and instead consider conditions under which relabeling a small number of 
examples is better than labeling a large number of examples once. They find that 
properties like the inductive bias of the classifier and the accuracy of workers have 
profound effects on which strategy results in higher accuracies. 
We expect increasing attention to this area in 
coming years. 
 
 
 
\subsection{Selecting the Best Worker for a Task} 
 
Since some workers are more skilled or less error prone than others, it can 
be useful to match workers and tasks.  Amazon Mechanical Turk is not an 
ideal platform for worker allocation, since it resembles a `pull' model 
where the workers choose their next tasks themselves. However, other 
platforms (\eg, Zooniverse~\cite{lintott08}) implement a `push' model 
where the system decides which tasks to send to a worker.  
 
There are various competing desiderata for such an allocation. 
The total budget or available time may be limited, 
so assigning every question to the best worker isn't 
typically feasible. More generally, one usually wishes to allocate 
tasks so as to achieve a high-quality result while ensuring worker satisfaction, 
which is especially important in citizen science or other applications with 
volunteer labor. This may imply an even distribution of tasks across 
workers and task diversity for any given worker. Parameters governing these 
distributions represent additional learning problems.  
 
Various attempts have been made to study this problem in  
restricted scenarios. For example, Karger \etal\ 
\cite{karger2011,karger-nips2011,karger2013} provide performance guarantees 
for a global worker assignment, but disallow adaptive task assignment, 
which would enable learning about worker skills over time 
to better utilize quality workers. 
On the other hand, Chen \etal\ \cite{chen-icml13} learn worker skills 
and adaptively select promising workers, but do not bound the 
total number of tasks allowed per worker to ensure that no worker is 
overburdened. 
\comment{ 
karger2011 and karger-nips2011 seem to allow a bound on the number 
of questions per worker. However, karger2013 seems not provide a 
limit on the number of questions per worker. 
Thus, I removed comments about treating workers "fairly" for this 
set of approaches. 
Note: karger2013 extends model to handle multi-class labeling with more 



than two possible labels. 
} 
 
Ho \etal\ \cite{ho-aaai12,ho-icml13} 
and Tran-Thanh \etal\ \cite{thanh-ecai12} assume constraints on the 
number of tasks that may be assigned to any single worker, and 
divide the control problem 
into two explicit phases of exploration and exploitation. 
Ho \etal\ study the scenario where there are multiple types of 
tasks and each worker has a hidden skill level for each task. 
Their model assumes that workers arrive randomly, one at a time. 
Tran-Thanh \etal\ allow the system to select workers, 
but assume that tasks are uniform and that a single worker 
completes each task, after which the controller is informed of the quality of 
the job performed. In most crowdsourcing settings, multiple workers 
are needed to ensure quality, and quality is not directly observable. 
 
Others consider the worker selection problem in the context 
of active learning. 
Yan \etal\ \cite{yan-icml11} assume worker skills are known and 
adaptively select the most confident worker for 
a given question (using a model based on question features). 
Donmez \etal\ \cite{donmez-kdd09} facilitate a gradual transition from 
exploration (learning about worker parameters) to exploitation (selecting 
the best worker for a question) by modeling worker reliability 
using upper confidence intervals. 
Both Yan \etal\ and Donmez \etal\ first select the question and 
then choose the appropriate worker. By contrast, Wauthier and Jordan 
\cite{wauthier-nips11} design a joint question-worker selection algorithm 
geared towards learning about (latent) parameters. 
 
The majority of question-worker selection methods seek to discover 
the best workers and use them exclusively, but in settings like volunteer 
crowdsourcing it is crucial to assign appropriate tasks to all workers 
regardless of their skill. 
Bragg \etal\ \cite{bragg-hcomp14} study the problem 
of routing questions in parallel to all available workers  
where tasks have varying difficulty and workers have varying skill, and 
develop adaptive algorithms that provide maximal benefit when 
workers and questions are diverse. 
 
Finally, Shahaf and Horvitz \cite{shahaf-aaai10} study generalized task 
markets where the abilities of various workers are known, but workers charge 
different rates for their services. They study worker selection given a task 
and desired utility so that the workers with appropriate skill levels and 
payment profiles are chosen for a given task. 
Zhang \etal\ \cite{zhang-aamas12} take a different approach entirely 
and shift the burden of finding the appropriate worker from the system 
to the workers, noting that 
workers themselves may be best equipped to locate another worker 
with the appropriate skills for completing a task. 
Overall, worker-task allocation is an exciting problem, for which there 
does not yet exist a satisfactory solution. We expect considerable progress 



in the next few years, given the problem's importance.  
 
\comment{ 
We should consider restructuring this subsection. 
 
Yan et al., Donmez et al., and Wauthier and Jordan consider active learning. 
 
What do Yan et al. and Wauthier and Jordan do w.r.t. the 
exploration / exploitation tradeoff? 
} 
 
\comment{ 
Picking workers - GTMs (shahaf) 
Picking workers - budget optimal crowdsourcing (karger, jordan, chien-ju ho) 
Picking question-annotator - MAB (nick jennings, ) 
Yan Y -- annotator selection 
 
Chien Ju Ho: workers arrive; hidden skill level per task; utility  
probabilistic depends on the mean of skill level. //Gets feedback after  
every work. Exploration/exploitation in phases. 
 
Nick Jennings: budget constraint; exploration/exploitation in phases; only  
best workers make it to exploitation phase; each worker advertises their  
own price; each worker can only do limited number of tasks; one kind of  
task 
 
Jordan: labeler-task allocation jointly. latent space and utility based on  
decreasing entropy of estimating these parameters; use of Markov chains. 
 
Karger: either spammer or hammer; one-shot model; all questions equal  
difficulty; random assignment 
 
Yan Y: choose one that will provide most confident label. feature space;  
 
Donmez: upper confidence intervals...  
 
 
Karger \etal~\cite{karger2011,karger-nips2011} make a significant  
departure from the models we have seen so far.  First, they represent  
worker responses to questions as a matrix, where each row represents some  
question, each column represents some worker, and each entry represents a  
worker's response to a given question. Then, they use low-rank matrix  
approximation to infer the correct answers. At a high level, they find two  
vectors that when multiplied, approximate the matrix, and interpret one of  
the vectors as the solution. They use this technique in an algorithm that  
combines task assignment and solution inference. They also provide  
theoretical guarantees. Given the assumptions that all questions share an  
equal level of difficulty and that workers are either always correct or  
randomly guess, they analytically prove the optimality of their algorithm  
at minimizing a budget for a target error rate with respect to any other  
possible algorithm using their assumptions. 
} 



 
 
\begin{figure} 
 \begin{center} 
{\resizebox*{3.5in}{!}{\rotatebox{0}{\includegraphics{figs/improve.pdf}}} } 
 \end{center} 
\caption{Control flow for an interative improvement workflow (adapted 
from~\cite{little10}).} 
\label{f:improve} 
\end{figure} 
 
 
 
 
\subsection{Controlling Workflows for Complex Objectives} 
 
Most AI research on workflow control has focused on simple multiple choice 
questions, as a natural first step. But the true power of crowdsourcing 
will be realized when we optimize workflows for more complex tasks.  A wide 
variety of complex tasks have already been explored within this 
framework. Examples include computing a max from a set of items 
\cite{guo-sigmod12}, multi-label classification and generating a taxonomy 
of items \cite{bragg-hcomp13}, iterative improvement workflow for writing 
image descriptions \cite{dai-aaai10,dmw11}, creating plans for achieving a 
goal \cite{kaplan-vldb13}, and selecting between multiple alternative 
workflows for a given task \cite{lin-aaai12}. In most of these settings the 
general abstraction includes defining a state space that encapsulates 
the agent's current belief about progress towards the requestor's 
objective, estimating the value of each possible worker task, issuing the 
best task, and repeating the process based on the expected outcome and any 
new information observed. 
 
The exact mechanism for computing the value of human actions depends on the 
high-level objective. In cases where the exact POMDP can be solved, the 
POMDP policy is used to select the worker tasks. In other cases simpler 
strategies have been used to reduce the computation involved. For example, 
greedy action selection was used to guide multi-label 
classification~\cite{bragg-hcomp13}, and limited lookahead search was used 
to control iterative improvement.  
 
As a case study we briefly discuss the iterative improvement workflow 
(Figure~\ref{f:improve}), introduced by Little \etal~\cite{little10} and 
optimized by Dai \etal~\cite{dai-aaai10,dmw11,dai-aij13}. Iterative 
improvement has been used to accomplish a wide range of objectives, such as 
deciphering human handwriting~\cite{little10}, but for concreteness we 
discuss the case where the objective is to generate high-quality English 
captions for images.  The workflow starts by asking a worker to write an 
initial caption for the picture.  Then, at each iteration a worker is shown 
the image and current caption and is asked to improve the caption by 
smoothing the writing or adding details.  Another set of workers is shown 
the two descriptions (original and ``improvement'') and is asked to select 
the best caption. These votes are aggregated and the best description is 



adopted for the next iteration.  
 
 
From the point of view of AI control, there are three actions that can be 
performed during execution of this workflow: 
(1) issue a human task asking for another improvement, (2) issue 
a ballot task, requesting another comparison vote, or (3) submit the 
current description. To pose the control problem as a POMDP we first define 
the world state: the qualities of the two image descriptions. Let's use $q_1$ 
to denote the quality of the base description and $q_2$ to denote the 
quality of the newly ``improved'' description. If no improvement has yet 
been requested, then $q_2$ is undefined.  We can constrain the qualities to 
be real numbers in $[0,1]$, where one represents an idealized perfect 
description of the image and zero denotes the worst imaginable description. 
 
 
Next, we define the POMDP actions corresponding to asking a worker to 
improve a description or compare two descriptions.  The improvement model 
computes a probability distribution for possible values of $q_2\in[0,1]$ 
given that a worker with ability $\gamma_{imp}$ tried to improve a 
description of quality $q_1$. Similarly, the voting model computes the 
probability that a worker of ability $\gamma_{vote}$ will respond that the 
description number one is better when shown descriptions whose qualities 
are $q_1$ and $q_2$.  Naturally, the probability of a mistake (saying ``description 
one is better'' when $q_2>q_1$) increases if $|q_1-q_2|$ is small and is 
inversely related to the worker's skill, $\gamma_{vote}$.  
 
So far we have defined the dynamics of a POMDP. The final step is defining 
the utility function for the system to maximize, which will have two parts 
--- the benefit due to returning a good description and the cost paid to 
workers. Clearly, the utility of returning a description with quality $q$ 
should be a monotonically increasing function of $q$, though different 
requestors will assign different values to different qualities. Most people 
find it hard to articulate their precise utility function, and this has led 
to techniques for {\em preference elicitation}, which usually try to induce a 
general utility function from a small set of concrete judgements that are 
easier for people to answer~\cite{boutilier02:pomdp,gajos05:preference}.  
 
 
 
The definition of the POMDP is complete; now we need to solve it to 
produce a {\em policy} that says which action to execute as a function of 
the agent's beliefs. Because the state space of this POMDP is continuous 
(qualities are continuous variables), it is difficult to solve 
exactly.   Dai \etal\ implemented this model and tried several approximate  
solution techniques, 
using supervised learning to induce the probabilistic transition functions 
from labeled training data. They found that POMDP-based control produced 
descriptions with the same quality as the original hand-coded policy, using 
30\% less labor.   
 
An even more interesting observation is the manner in which 



the AI policy achieved its savings --- by issuing voting jobs in a 
dramatically asymmetrical fashion. Little \etal's hand-coded policy always 
asked two workers to compare the original and ``improved'' descriptions. If 
the assessments agreed, they adopted the consensus description for the next 
iteration. If the two workers disagreed, then the policy asked a third 
worker to break the tie. Thus on the average, the hand-coded policy issued 
about 2.5 voting tasks per iteration.  In contrast, the POMDP policy, shown 
in Figure~\ref{f:exp}, issues {\em no} voting tasks in the early iterations, 
allowing it to issue five or more in later iterations. In hindsight, this 
allocation makes sense --- since it is relatively easy for workers to 
improve a description early on, there is little reason to waste worker time 
verifying the improvement's quality.   
After a few cycles of improvement, however, the description has become 
increasing good and therefore harder and harder to improve. Now the POMDP 
chooses to spend additional resources issuing comparison votes, since it 
wants to be sure about which description to adopt for the next iteration. 
 
\begin{figure} 
 \begin{center} 
{\resizebox*{2in}{!}{\rotatebox{0}{\includegraphics{figs/exp.pdf}}} } 
 \end{center} 
\caption{The POMDP controller for an iterative improvement workflow 
  allocates resources differently than the hand-engineered policy, 
 issuing more vote tasks (ballots) in later iterations, when 
  the comparisons are harder to make and additional opinions are needed for 
  accurate decisions~\cite{dai-aij13}.} 
\label{f:exp} 
\end{figure} 
 
 
This example 
 points to the value of using AI control technology for complex tasks. 
For such tasks, often a human designer is unable to think through all 
possibilities, and hand-engineering a control policy 
that consistently exhibits optimal behavior can be difficult.  
Data-driven control approaches 
prove much more robust to corner cases and often end up saving large 
amounts of money. In other work, Bragg \etal\ \SHORTCITE{bragg-hcomp13} 
show that they can categorize a large number of items into multiple 
categories with the same accuracy as hand-engineered policies while 
using less than 10\%\ of the labor. 
 
A key limitation of this technology is its dependence on AI practitioners. 
The AI models and algorithms change somewhat based on the task at 
hand. They require a level of mathematical sophistication that is often 
too great a barrier for typical requestors considering crowdsourcing. Weld 
\etal\ \SHORTCITE{weld-hcomp11} sketch the architecture of a 
general purpose system, which will take a new workflow written in 
a high-level description language and automatically optimize it to control the 
workflow intelligently. If researchers can implement systems of this form 
and make them easy to use, then AI methods may transform crowdsourcing 
practice in the years to come.  
 



\subsection{Minimizing Latency} 
 
Although most research has focused on minimizing cost, there are a number 
of important situations where latency, the time to complete a task or 
workflow, is especially important. For example, when crowdsourced workers are 
used to interpret a smartphone photo of a street sign for 
visually-challenged users~\cite{lasecki-assets13}, a quick response is 
essential. Other low-latency applications include text 
editing~\cite{bernstein-uist11}, the selection of key frames from video, 
and captioning~\cite{lasecki-uist12}. 
 
We may able to obtain near instantaneous work if we pre-employ several 
workers so that, as work arrives, they are already 
 waiting to work on it~\cite{bigham-uist10}. This technique, termed 
the {\em retainer model}, has been studied analytically to determine the 
minimum number of retained workers required to achieve a quick response and 
the effect of delay on worker attentiveness.  Queueing theory may be used 
to model the probable arrival times for user requests and thus the expected 
wait times for workers. We can then choose the number of workers to 
optimize the total cost subject to a constraint on expected delays or 
probability of missing a request~\cite{bernstein-ci12}. If there are 
several tasks requiring retainers then these can share the waiting workers 
thus amortizing the wait costs across tasks. 
 
 
 
\section{Conclusion} 
 
In summary, crowdsourcing, a popular form of collective intelligence, has 
close connections to artificial intelligence. An increasing number of 
machine-learning applications are trained with data produced by crowd 
annotation. Furthermore, many AI methods can be used to improve 
crowdsourcing. In particular, expectation maximization may be used to 
aggregate the results of multiple imprecise workers, learning worker 
accuracies at the same time. Partially-observable Markov decision processes 
(POMDPs) and related decision-theoretic approaches may be used to optimize 
the types and number of tasks given to workers. Since these AI methods 
are a very active area of research, we expect to see even more powerful 
methods in the coming years. 
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